©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 2

Chemistry

1. In which of the following hybridisation of underlined atom changes
A. $\underline{C} \mathrm{H}_{3} \mathrm{COOH}$ is decarboxylated
B. $\mathrm{CH}_{3} \underline{\mathrm{CH}_{2} \mathrm{OH}}$ is dehydrated
C. $\mathrm{CH}_{3} \underline{\mathrm{CH}_{3}}$ is chlorinated
D. $\underline{C}_{6} H_{6}$ is nitrated

Answer: B

2. Reffering to the following reactions the missing products A, B, C and D respectively are

$$
\begin{aligned}
& \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq})+\mathrm{NaNO}_{2}(\mathrm{aq}) \rightarrow[\mathrm{A}]+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{NaCl}(a q) \\
& \left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7} \xrightarrow{\Delta}[\mathrm{~B}]+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s}) \\
& \mathrm{Cu}+\mathrm{HNO}_{3}(\text { dilute }) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+[\mathrm{C}]+\mathrm{H}_{2} \mathrm{O}(l) \\
& \mathrm{Cu}+\mathrm{HNO}_{3}(\text { concentrated }) \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+[\mathrm{D}]+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
\end{aligned}
$$

A. $N_{2}, N_{2}, N O, N O_{2}$
B. $\mathrm{N}_{2}, \mathrm{NH}_{3}, \mathrm{~N}_{2}, \mathrm{NO}$
C. $\mathrm{N}_{2}, \mathrm{~N}_{2}, \mathrm{NO}_{2}, \mathrm{NO}_{2}$
D. $\mathrm{N}_{2}, \mathrm{NH}_{3}, \mathrm{NO}_{2}, \mathrm{~N}_{2} \mathrm{O}_{4}$

Answer: A

3. Ferrous ion changes to X ion on reacting with acidified hydrogen peroxide. The number of d-electrons present in X and its magnetic moment (in $B M$) are respectively .
A. 6 and 6.93
B. 5 and 5.92
C. 5 and 4.9
D. 4 and 5.92

Answer: B

- Watch Video Solution

4. Combustion of hydrogen in a fuel cell at 300 K is represented as $2 \mathrm{H}_{2(g)}+\mathrm{O}_{2(g)} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$. If ΔH and ΔG are $-241.60 \mathrm{kJmol}^{-1}$ and $-228.40 \mathrm{kJmol}^{-1}$ of $\mathrm{H}_{2} \mathrm{O}$. The value of ΔS for the above process is
A. $4.4 \mathrm{JK}^{-1}$
B. $-88 \mathrm{JK}^{-1}$
C. $+88 \mathrm{JK}^{-1}$
D. $-44 \mathrm{JK}^{-1}$

Answer: B

- Watch Video Solution

5. Following is the graph between $\log T_{\frac{1}{2}}$ and \log a ($a=$ initial concentration) for a given reaction at $27^{\circ} \mathrm{C}$.

Hence, order is
A. 0
B. 1
C. 2
D. 3

Answer: A
6. At $25^{\circ} \mathrm{C}, \mathrm{pH}$ range of phenolphthalein is $8-10$. At $100^{\circ} \mathrm{C}, \mathrm{pH}$ range of phenolphthalein would be
A. pH range remain unaffected by the temperature
B. pH range is altered to $8-9$
C. pH range is altered to 7-11
D. pH range is altered to 8-11

Answer: B

- Watch Video Solution

7. How many unit cell are present in a cubic-shaped ideal crystal of NaCl of mass $1.0 g$?
A. 2.57×10^{21}
B. 5.14×10^{21}
C. 1.28×10^{21}

D. 1.71×10^{21}

Answer: A

- Watch Video Solution

8. A : Hybridization of carbon is $s p^{2}$ in all its crystalline allotropes .
R : There are alternate double -single bonds in each allotrope of carbon .
A. Both Assertion \& Reason are true and the reason is the correct explanation of the assertion.
B. Both Assertion \& Reason are true but the reason is not the correct explanation of the assertion.
C. Assertion is true statement but Reason is false .
D. Both Assertion and Reason are false statement .

Answer: D

9. Which gives nucleophilic addition reaction?
A. Hydrolysis of ethyl chloride by NaOH
B. Purification of acetaldehyde by NaHSO 3
C. Alkylation of anisole
D. Decarboxylation of acetic acid

Answer: B

- Watch Video Solution

10. The standard reduction potential for $C u^{2+} / C u$ is $+0.34 V$. Calculate the reduction potential at $\mathrm{pH}=14$ for the above couple. $K_{S P}$ of $\mathrm{Cu}(\mathrm{OH})_{2}$ is 1.0×10^{-19}
A. -0.22 V
B. +0.22 V
C. -0.44 V
D. +0.44 V

Answer: A

- Watch Video Solution

11. The reduced temperature $=\theta=\frac{T}{T_{C}}$

The reduced pressure $=\pi=\frac{P}{P_{C}}$
The reduced volume $=\phi=\frac{V}{V_{C}}$
Hence, it can be said that the reduced equation of state may be given as
A. $\left(\frac{\pi}{3}+\frac{1}{\phi^{2}}\right)(3 \phi-1)=\frac{8}{3} \theta$
B. $\left(\frac{\pi}{3}+\frac{1}{\phi}\right)(\phi-1)=\frac{8}{3} \theta$
C. $\left(\frac{\pi}{4}+\frac{1}{\phi}\right)(3 \theta-1)=\frac{8}{3} \phi$
D. $\left(\frac{\pi}{3}+\frac{1}{\phi}\right)(3 \phi-1)=\frac{8}{3} \theta$

Answer: A

12. Which of the following will have least hindered rotation about carboncarbon bond?
A. Acetylene
B. Hexachloroethane
C. Ethane
D. Ethylene

Answer: C

- Watch Video Solution

13. Magnetic moments 2.84 B.M is given by :
(At. nos. $\mathrm{Ni}=28, \mathrm{Ti}=22, \mathrm{Cr}=24, \mathrm{Co}=27$).
A. $N i^{2+}$
B. $T i^{3+}$
C. Cr^{2+}
D. Co^{2+}

Answer: A

- Watch Video Solution

14. The radioactive isotope ${ }_{.90}^{234} \mathrm{Th}$ undergoes two successive β - decay followed by one $\alpha-$ decay. The atomic number and mass number respectively of the resulting atom is:
A. 92 and 237
B. 94 and 230
C. 90 and 230
D. 92 and 230

Answer: C

15. Alkali metals act as
A. good dehydrating agent
B. good reducing agent
C. good oxidising agent
D. none of these

Answer: B

- Watch Video Solution

16. In the hydroboration-oxidation reaction of Propene with diborane, $\mathrm{H}_{2} \mathrm{O}_{2}$ and NaOH , the organic compound formed is
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
B. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
C. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COH}$
D. $\mathrm{CH}_{3} \mathrm{CHOHCH}_{3}$

Answer: A

- Watch Video Solution

17. Find the weight of $\mathrm{H}_{2} \mathrm{SO}_{4}$ in 1200 mL of a solution of 0.4 N strength.
A. 23.52 g
B. 2.53 g
C. 2.53 g
D. 29.52 g

Answer: A

18. The method of zone refining of metals is based on the principle of:
A. greater mobility of the pure metal than that of impurity
B. greater solubility of the impurity in the molten state than in the solid
C. higher melting point of the impurity than that of the pure metal.
D. All above the correct

Answer: B

- Watch Video Solution

19. The atomic masses of Li and K are 7 and 39, respectively . According to law of triads the atomic mass of Na will be
A. 23
B. 32
C. 46
D. 64

Answer: A

- Watch Video Solution

20. The correct IUPAC name of the compound is

$$
\mathrm{CH}_{3}-\underset{\mid}{\mathrm{Cl}} \underset{\mathrm{Cl}}{\mathrm{C}} \mathrm{H}-\underset{I}{\mathrm{C}} \mathrm{C}-\underset{\mid}{\mathrm{C}} \mathrm{C}-\mathrm{CH}_{2}-\mathrm{CH}_{3}
$$

A. 4-Bromo-5-chloro-3-iodohexane
B. 3-Bromo-2-chloro-4-iodohexane
C. 3-Bromo-4-iodo-2-chlorohexane
D. 2-Bromo-3-bromo-4-iodohexane

Answer: B

21. $P C l_{5}$ vapour decomposes on heating according to the reaction :

$$
P C l_{5}(g) \Leftrightarrow P C l_{3}(g)+C l_{2}(g)
$$

The density of a sample of a partially dissociated $P C l_{5}$ at 1.0 atm and 500 K was found $4.8 \mathrm{~g} / \mathrm{L}$. Calculate the degree of dissociation and ΔG° for the reaction at 500 K
(Given $\mathrm{R}=0.082 \mathrm{~L}$ atm $\mathrm{K}^{-1} \mathrm{~mol}^{-1}$)
, $\left.\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, \ln \mathrm{x}=2.3031 \log _{10} \mathrm{x}\right)$

- Watch Video Solution

22. Which of the following will show optical isomers?
(I) cis- $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{2}(e n)_{2}\right]^{3+}$
(II) trans- $\left[\mathrm{IrCl}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{3-}$
(III) $\left[R h(e n)_{3}\right]^{3+}$
(IV) cis- $\left[\operatorname{Ir}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right]$

- Watch Video Solution

23. Depression in freezing point of 0.01 molal aqueous HCOOH solution is $0.02046^{\circ} C .1$ molal aqueous urea solution freezes at $-1.86^{\circ} C$. Assuming molality equal to molarity, calculate the pH of HCOOH solution.

- Watch Video Solution

24. The volume strength of $1.5 \mathrm{~N}_{2} \mathrm{O}_{2}$ solution is (Given molar volume at $\mathrm{STP}=22.4 \mathrm{~L}$)

- Watch Video Solution

25. The number of greenhouse gases of the following is \qquad .

$$
\mathrm{CO}_{2}, \mathrm{O}_{2}, \mathrm{~N}_{2} \mathrm{O}, \mathrm{CH}_{4}, \mathrm{CFCs}, \mathrm{CO}, \mathrm{H}_{2} \mathrm{O}(\mathrm{~g}), \mathrm{O}_{3}
$$

- Watch Video Solution

26. Compared with the alkaline earth metals, the alkali metals exhibit
A. Greater hardness
B. Smaller ionic radii
C. Lower ionisation energies
D. Highest boiling points

Answer: C

D Watch Video Solution

27. For the reaction
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ The rate of change of concentration for hydrogen is
$0.3 \times 10^{-4} M s^{-1}$ The rate of change of concentration of ammonia is :
A. $-0.2 \times 10^{-4} M s^{-1}$
B. $0.2 \times 10^{-4} M s^{-1}$
C. $0.1 \times 10^{-4} M s^{-1}$
D. $0.3 \times 10^{4} M s^{-1}$

- Watch Video Solution

28. The correct increasing bond angles order is :
A. $C I F_{3}>P F_{3}>N F_{3}>B F_{3}$
B. $\mathrm{BF}_{3}>P F_{3}>\mathrm{NF}_{3}>\mathrm{CIF}_{3}$
C. $\mathrm{BF}_{3}>\mathrm{CIF}_{3}>\mathrm{PF}_{3}>\mathrm{NF}_{3}$
D. $B F_{3}>N F_{3}>P F_{3}>C I F_{3}$

Answer: D

- Watch Video Solution

29. If the uncertainty in the position of a particle is equal to its de-Broglie wavelength, the minimum uncertainty in its velocity should be
A. $\frac{1}{4 \pi}$
B. $\frac{v}{4 \pi}$
C. $\frac{v}{4 \pi m}$
D. $\frac{m v}{4 \pi}$

Answer: B

- Watch Video Solution

30. $C_{5} H_{10} O$ is carbonyl compound. The number of structural isomers possible for this molecular formula are
A. 5
B. 8
C. 6
D. 7
31. The set representing the correct order of ionic radii is
A. $\mathrm{Li}^{+}>\mathrm{Be}^{2+}>\mathrm{Na}^{+}>\mathrm{Mg}^{2+}$
B. $\mathrm{Li}^{+}>\mathrm{Na}^{+}>\mathrm{Mg}^{2+}>\mathrm{Be}^{2+}$
C. $\mathrm{Mg}^{2+}>\mathrm{Be}^{2+}>\mathrm{Li}^{+}>\mathrm{Na}^{+}$
D. $\mathrm{Na}^{+}>\mathrm{Li}^{+}>\mathrm{Mg}^{2+}>\mathrm{Be}^{2+}$

Answer: D

- Watch Video Solution

32. Gem dihalides on treatment with alcoholic KOH give
A. Alkyne
B. Alkene
C. Alkane
D. All of these

Answer: A

(Watch Video Solution

33. Which of the following has longest C-O bond length? (Free C-O bond length in CO is $1.128 \AA$).
A. $N i(C O)_{4}$
B. $\left[\mathrm{Co}(\mathrm{CO})_{4}\right]^{-}$
C. $\left[\mathrm{Fe}(\mathrm{CO})_{5}\right]^{2-}$
D. $\left[\mathrm{Mn}(\mathrm{CO})_{6}\right]^{+}$

Answer: C

- Watch Video Solution

34. $M F+X e F_{4} \rightarrow M^{+} A^{-}\left(M^{+}-\right.$alkali metal cation) The state of hybridisation of the central atom in A and sphere of the species are:
A. $s p^{3} d, T B P$
B. $s p^{3} d^{3}$, distorted octahedral
C. $s p^{3} d^{3}$, pentagonal planar
D. No compound formed at all

Answer: C

- Watch Video Solution

35. Polystyrene , dacron and orlon are classified respectively as
A. Chain growth, step growth , step growth
B. Chain growth , step - growth , step growth
C. Chain growth, step - growth , chain growth
D. Step growth, step growth , chain growth

Answer: C

D Watch Video Solution

36. Which of the acids cannot be prepared by Grignard reagent?
A. Acetic acid
B. Succinic acid
C. Formic acid
D. All of these

Answer: C

- Watch Video Solution

37. pH of a 100 cc solution is 2 . It will not change if
A. 100 cc of water is added to it
B. 100 cc of 0.1 M HCl is added to it
C. $100 \mathrm{cc}(\mathrm{N} / 100) \mathrm{HCl}$ is added to it
D. 1 cc of 0.1 M HCl is added to it

Answer: C

- Watch Video Solution

38. Determine the order of basic stregth of the given molecules

i.

ii.

ii1.
A. $i>i i i>i i$
B. $i i>i>i i i$
C. $i i i>i>i$
D. $i>i i>i i i$

Answer: C

- Watch Video Solution

39. Four successive members of the first row transition elements are listed below with their atomic number. Which one of them is expected to have the highest third ionisation enthalpy?
A. Vanadium (Z = 23)
B. Chromium ($Z=24$)
C. Manganese ($\mathrm{Z}=25$)
D. Iron ($Z=26$)

Answer: C

D Watch Video Solution

40. The concentration in g / L of a solution of cane sugar (Molecular weight $=342$) which is isotonic with a solution containing 6 g of urea (Molecular weight =60) per litre is
A. $3.42 g / L$
B. $34.2 g / L$
C. $5.7 \mathrm{~g} / \mathrm{L}$
D. $19 g / L$

Answer: B

- Watch Video Solution

41. CsCl crystallises in body centred cubic lattice. If 'a' its edge length then which of the following expressions is correct ?
A. $r_{C s^{+}}+r_{C l^{-}}=3 a$
B. $r_{C s^{+}}+r_{C l^{-}}=\frac{3 a}{2}$
C. $r_{C s^{+}}+r_{C l^{-}}=\frac{\sqrt{3}}{2} a$
D. $r_{C s^{+}}+r_{C l^{-}}=\sqrt{3 a}$

Answer: C

- Watch Video Solution

42. Phenol can be distinguished from ethanol by the following reagents except
A. Sodium
B. Neutral FeCl_{3}
C. Phthalic anhydride/conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$ and NaOH
D. $\mathrm{Br}_{2} / \mathrm{H}_{2} \mathrm{O}$

Answer: A

43. Which of the following is an intensive property?
A. Volume
B. Enthalpy
C. Surface tension
D. Free energy

Answer: C

- Watch Video Solution

44. For the following three reaction 1,2 and 3 , equilibrium constants are given:
(1) $\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \Leftrightarrow \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)}, K_{1}$
(2) $\mathrm{CH}_{4(g)}+\mathrm{H}_{2} \mathrm{O}_{(g)} \Leftrightarrow \mathrm{CO}_{(g)}+3 \mathrm{H}_{2(g)}, \mathrm{K}_{2}$
(3) $\mathrm{CH}_{4(g)}+2 \mathrm{H}_{2} \mathrm{O}_{(g)} \Leftrightarrow \mathrm{CO}_{2(g)}+4 \mathrm{H}_{2(g)}, \mathrm{K}_{3}$

Which of the following relations is correct ?
A. $K_{1} \sqrt{K_{2}}=K_{3}$
B. $K_{2} K_{3}=K_{1}$
C. $K_{3}=K_{1} K_{2}$
D. $K_{3} K_{2}^{3}=K_{1}^{2}$

Answer: C

- Watch Video Solution

45. Consider the graph between compressibility factor Z and pressure P,

The correct increaing order of ease of liquefaction of the gases shown in the above graph is
A. $\mathrm{H}_{2}<\mathrm{N}_{2}<\mathrm{CH}_{4}<\mathrm{CO}_{2}$
B. $\mathrm{CO}_{2}<\mathrm{CH}_{4}<\mathrm{N}_{2}<\mathrm{H}_{2}$
C. $\mathrm{H}_{2}<\mathrm{CH}_{4}<\mathrm{N}_{2}<\mathrm{CO}_{2}$
D. $\mathrm{CH}_{4}<\mathrm{H}_{2}<\mathrm{N}_{2}<\mathrm{CO}_{2}$

Answer: A

- Watch Video Solution

46. How many of the following species are related to Hall's process of purification of bauxite? White bauxite , $\mathrm{Na}_{2} \mathrm{CO}_{3}, \mathrm{CO}_{2}$, cryolite, red bauxite, NaOH

- Watch Video Solution

47. The dipole moment of HBr is $1.6 \times 10^{-30} \mathrm{~cm}$ and interatomic spacing is $1 \AA$. The \% ionic character of HBr is
48. How many of the following acids will show higher reactivity towards esterification reaction as compared to acetic acid?

, HCOOH ,

- Watch Video Solution

49. Consider an electrochemical cell :
$A(s)\left|A^{n+}(a q .2 M)\right|\left|B^{2 n+}(a q .1 M)\right| B(s)$. The value of ΔH° for the cell reaction is twice that of ΔG° at 300 K . If the amf of the cell is zero, the ΔS° (in $\mathrm{JK}^{-1} \mathrm{~mol}^{-1}$) of the cell reaction per mole of B formed at 300 K is \qquad .
(Given : $\ln (2)=0.7, \mathrm{R}$ (universal gas constant) $=8.3 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~mol}^{-1} . \mathrm{H}, \mathrm{S}$ and G are enthalpy, entropy and Gibbs energy, respectively.)

- Watch Video Solution

50.

The electrophile involved in above reaction has \qquad lone pair of electrons on central carbon atom.

- Watch Video Solution

51. When 10 ml of $0.1 M$ acetic acid $\left(p K_{a}=5.0\right)$ is titrated against 10 ml of $0.1 M$ ammonia solution $\left(p K_{b}=5.0\right)$, the equivalence point occurs at $p H$
A. 5
B. 6
C. 7
D. 9

Answer: C

- Watch Video Solution

52. Choose the incorrect statements.
A. BeCO_{3} is preserved in an atmosphere of CO_{2} as it is thermaly least stable.
B. $B e F_{2}$ forms a complex compound with excess NaF , in which the complex entity containing Be , is a cation.
C. Beryllium dissolves in an alkali to form $\left[\mathrm{Be}(\mathrm{OH})_{4}\right]^{2-}$ ion.
D. Beryllium exhibits no diagonal relationship with sodium.

Answer: B

- Watch Video Solution

53.

rotation -45°, so optical rotation of

A. $+45^{\circ}$
B. 0°
C. -45°
D. can not be predicted

Answer: D

- Watch Video Solution

54. HF is not stored in glass bottles because
A. It reacts with the aluminium oxide of the glass
B. it reacts with SiO_{2} of the glass
C. It reacts with the visible part of the light
D. It reacts with sodium oxide of the glass

Answer: B

- Watch Video Solution

55. An air column closed in a tube sealed at one end by a Hg column having height h. When the tube is placed with open end down, the height of the air column lis l_{1}. If the tube is turned so that its open end is at the top, the height of the air column is l_{2}. What is the atmospheric pressure

A. $P_{0}=\frac{h\left(l_{1}+l_{2}\right)}{\left(l_{2}-l_{1}\right)} \mathrm{cm}$ of Hg
B. $P_{0}=\frac{h\left(l_{1}-l_{2}\right)}{\left(l_{2}+l_{1}\right)} \mathrm{cm}$ of Hg
C. 76 cm of Hg
D. $P_{0}=\frac{h\left(l_{2}+l_{1}\right)}{\left(l_{2}-l_{1}\right)} \mathrm{cm}$ of Hg

Answer: D

- Watch Video Solution

56. 2-Methylbutan-2-ol can be obtained by the acid catalyzed hydration of
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$
B. $\mathrm{CH}_{3} \mathrm{CH}=\mathrm{CHCH}_{3}$
C. $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}=\mathrm{CHCH}_{3}$
D. Either of the three

Answer: C

- Watch Video Solution

57. The pyrimidine bases present in DNA are
A. Cytosin and Uracil
B. Cytosine and Thymine
C. Cytosin and Guanine
D. Cytosine and Adenine

Answer: B

- Watch Video Solution

58. Which of the following is not isostructural with SiCl_{4} ?
A. SO_{4}^{2-}
B. PO_{4}^{3-}
C. NH_{4}^{+}
D. $S C l_{4}$

Answer: D

D Watch Video Solution

59. For the reaction, $2 A+B \rightarrow C+D$, the order of reaction is
A. One with respect [B]
B. Two with respect to [A]
C. Three
D. Cannot be predicted

Answer: D

- Watch Video Solution

60. In the reaction
$\mathrm{CH}_{3} \mathrm{COOH} \xrightarrow{\mathrm{LiAlH}_{4}}(A) \xrightarrow{\mathrm{I}_{2}+\mathrm{NaOH}}(B) \xrightarrow{\mathrm{Ag} \text { (Dust) }}(C)$, the final product C is:-
A. $C_{2} H_{5} I$
B. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
C. $\mathrm{C}_{2} \mathrm{H}_{2}$
D. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$

Answer: C

- Watch Video Solution

61. Equilibrium constant K_{p} for the reaction $\mathrm{CaCO}_{3}(s) \Leftrightarrow \mathrm{CaO}(s)+\mathrm{CO}_{2}(\mathrm{~g})$ is 0.82 atm at $727^{\circ} \mathrm{C}$.

If 1 mole of CaCO_{3} is placed in a closed container of 20 L and heated to this temperature, what amount of CaCO_{3} would dissociate at equilibrium?
A. 0.2 g
B. 80 g
C. 20 g
D. 50 g

Answer: C

- Watch Video Solution

62. $\mathrm{TiAl}\left(\mathrm{SO}_{4}\right)_{2} . x \mathrm{H}_{2} \mathrm{O}$ is bcc with 'a' $=1.22 \mathrm{~nm}$. If the density of the solid is $2.32 g / c c$, then the value of x is (Given : $N_{A}=6 \times 10^{23}$), at. Mass : $T i=204, A l=27, S=32)$.
A. 2
B. 4
C. 47
D. 70

Answer: C

- Watch Video Solution

63. In compound $\mathrm{O}_{2} \mathrm{SC}\left(\mathrm{NH}_{2}\right)_{2}$, the geometry around S and N are respectively.
A. trigonal planar, trigonal pyramidal
B. tetrahedral,pyramidal
C. trigonal planar, tetrahedral
D. linear, pyramidal

Answer: A

- Watch Video Solution

64. Geometrical shapes of the complex formed by the reaction of Ni^{2+} with $\mathrm{Cl}^{\Theta}, \mathrm{CN}^{\Theta}$ and $\mathrm{H}_{2} \mathrm{O}$ are :
A. Octahedral, tetrahedral and square planar
B. Tetrahedral , square planer and octahedral
C. Square planer, tetrahedral and octahedral
D. Octahedral, square planer and octahedral

Answer: B

- Watch Video Solution

65. Slope of V_{0} vs v curve is (where $V_{0}=$ Stopping potential, $\mathrm{v}=$ subjected freqency)
A. e
B. $\frac{h}{e}$
C. ϕ
D. h

Answer: B

66. The value of $\log _{10} K$ for a reaction $A \Leftrightarrow B$ is (Given:
$\Delta_{f} H_{298 K}^{\Theta}=-54.07 \mathrm{kJmol}^{-1}$,
$\Delta_{r} S_{298 \mathrm{~K}}^{\Theta}=10 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, and $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
A. 5
B. 10
C. 95
D. 100

Answer: B

- Watch Video Solution

67. Aldehyde with $\mathrm{NH}_{2} \mathrm{NH}_{2}$ forms
A. Hydrazone
B. Aniline
C. Nitrobenzene
D. none of these

Answer: A

- Watch Video Solution

68. Gallium arsenide is purified by \qquad .
A. van-Arkel method
B. Zone-refining method
C. Electrolytic method
D. Liquation

Answer: B

(Watch Video Solution

69. In the nucleophilic substitution reactions ($S_{N} 2$ or $S_{N} 1$), the reactivity of alkyl halids follows the sequence
A. $R-I>R-B r>R-C l>R-F$
B. $R-C l>R-F>R-B r>R-I$
C. $R-F>R-C l>R-B r>R-I$
D. $R-I>R-F>R-C l>R-B r$

Answer: A

- Watch Video Solution

70. At a constant temperature, which of the following aqueous solutions will have the maximum vapour pressure?
$\left(\mathrm{Molwt} \mathrm{NaCl}=58.5, \mathrm{H}_{2} \mathrm{SO}_{4}=98.0 \mathrm{gmol}^{-1}\right)$
A. 1 molal $N a C l(\mathrm{aq})$
B. 1 molar NaCl (aq)
C. 1 molal $\mathrm{H}_{2} \mathrm{SO}_{4}$ (aq)
D. 1 molar $\mathrm{H}_{2} \mathrm{SO}_{4}$ (aq)

Answer: A

- Watch Video Solution

71. First and second ionization energies of magnesium are 7.646 and 15.035 eV respectively. The amount of energy in kJ/mol needed to convert all the atoms of Magnesium into Mg^{2+} ions present in 12 mg of magnesium vapours is: (Report your answer by multiplying with 10 and round it upto nearest integer)
(Given $1 \mathrm{eV}=96.5 \mathrm{kJmol}^{-1}$)

- Watch Video Solution

72. Molar conductivity of aqueous solution of $H A$ is $200 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}, \mathrm{pH}$ of this solution is 4

Calculate the value of $p K_{a}(H A)$ at $25^{\circ} \mathrm{C}$.
Given $\wedge_{M}^{\infty}(N a A)=100 \mathrm{Sm}^{2} \mathrm{~mol}^{-1}$,
$\wedge_{M}^{\infty}(H C l)=425 S c m^{2} \mathrm{~mol}^{-1}$,
$\wedge_{M}^{\infty}(\mathrm{NaCl})=125 \mathrm{Scm}^{2} \mathrm{~mol}^{-1}$

- Watch Video Solution

73. How many of the following ethers CANNOT be prepared by Williamson's synthesis?
$\mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{CH}_{3}, \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OCH}_{3},\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2} \mathrm{O},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{COCH}_{3},\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{2} \mathrm{O},(\mathrm{CF}$

- Watch Video Solution

74. How many of the following groups if substituted at o- and /or ppostions of chlorobenzene, increase its reactivity towards nucleophilic substitution?

$$
-\mathrm{CN},-\mathrm{CH}_{3},-\mathrm{NH}\left(\mathrm{CH}_{3}\right),-\mathrm{COOH},-\mathrm{NO}_{2},-\mathrm{OCH}_{3} .
$$

75. How many of the following are lanthanides?

Uranium, praseodymium, erbium, gadolinium, cerium, hafnium, osmium, iridium

- Watch Video Solution

76. The $p H$ of pure water at $25^{\circ} \mathrm{C}$ and $35^{\circ} \mathrm{C}$ are 7 and 6 , respectively. Calculate the heat of formation of water from H^{\oplus} and $\stackrel{\ominus}{O} H$.
A. $\Delta H=84.551 \mathrm{kcal} / \mathrm{mol}$
B. $\Delta H=-84.551 \mathrm{kcal} / \mathrm{mol}$
C. $\Delta H=44.981 \mathrm{kcal} / \mathrm{mol}$
D. $\Delta H=-44.981 \mathrm{kcal} / \mathrm{mol}$

Answer: B

77. Which reaction does not occur in reduction process.
A. $\mathrm{HgS}+2 \mathrm{HgO} \xrightarrow{\Delta} 3 \mathrm{Hg}+\mathrm{SO}_{2}$
B. $\mathrm{PbS}+2 \mathrm{PbO} \xrightarrow{\Delta} 3 \mathrm{~Pb}+\mathrm{SO}_{2}$
C. $\mathrm{ZnS}+2 \mathrm{ZnO} \xrightarrow{\Delta} 3 \mathrm{Zn}+\mathrm{SO}_{2}$
D. None of these

Answer: C

- Watch Video Solution

78. Percentage loss in mass, when $\mathrm{NaHCO}_{3}(s)$ is heated in open vessel
$2 \mathrm{NaHCO}_{3}(s) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{CO}_{2}(g)+\mathrm{H}_{2} \mathrm{O}(g)$
A. 21.12%
B. 36.9%
C. 30%
D. 32.23%

Answer: B

D Watch Video Solution

79. A fire work gave bright crimson light. It probably contain an element of
A. Ca
B. Sr
C. Ba
D. Mg

Answer: B

- Watch Video Solution

80. The gas produced by the passage of air over hot coke is
A. Carbon monoxide
B. Carbon dioxide
C. Producer gas
D. Water gas

Answer: C

D Watch Video Solution

81. Which amongst the following has zero magnetic moment ?
A. $\left[\mathrm{Ni}\left(\mathrm{NH}_{3}\right)_{6}\right] C l_{2}$
B. $N a_{3}\left[F e F_{6}\right]$
C. $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right] \mathrm{SO}_{4}$
D. $K_{4}\left[F e(C N)_{6}\right]$

Answer:

82. The correct statement is
A. Potassium dichromate is more soluble than sodium dichromate
B. All $C r-O$ bond lengths in dichromate ion are equal.
C. Potassium dichromate is used as a primary standard in volumetric titrations
D. All are correct

Answer: C

D Watch Video Solution

83. Incorrect matches is
A. $C O C l_{2}$-phosgene
B. $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ - Thionyl chloride
C. $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{SCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}$ - mustard gas
D. $\mathrm{H}_{2} \mathrm{SO}_{5}$ - Caro's acid

Answer: B

- Watch Video Solution

84. The $p \pi-p \pi$ bond is present in
A. XeO_{3}
B. SO_{4}^{2-}
C. SO_{2}
D. All of these

Answer: C

- Watch Video Solution

85. The decreasing order of rate of reaction for the following compounds towards $S_{N} 2 T h$ (bimolecular nucleophilic substitution with tetrahedral intermediate) reaction is
(i) $\mathrm{CH}_{3}-{\stackrel{O}{\mathrm{O}} \mathrm{CH}_{2}-\stackrel{\text { II }}{\mathrm{C}}-\mathrm{NH}_{2}}_{\circ}$
(ii) $\mathrm{CH}_{3}-\stackrel{\stackrel{O}{\|} \mathrm{CH}_{2}-\stackrel{+}{\mathrm{C}}-\mathrm{Br}}{ }$
(iii) $\mathrm{CH}_{3}-\stackrel{\stackrel{O}{\mathrm{C}} \mathrm{H}_{2}-\stackrel{\stackrel{+}{\mathrm{C}}}{\mathrm{O}} \mathrm{O}-\stackrel{\|}{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{CH}_{3}}{ }$
(iv) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\stackrel{\stackrel{-1}{\mathrm{C}}-\mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{5}}{ }$
A. $I>I I>I I I>I V$
B. $I I>I I I>I>I V$
C. $I I I>I I>I V>I$
D. $I I>I I I>I V>I$

Answer: D

86. A benzenoid organic compound $A\left(C_{8} H_{8} O\right)$ gives B and white crystalline solid C with Cl_{2} and NaOH . On heating compound B gives a compound with unpleasant smell with $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{NH}_{2}$ and alcoholic KOH. Compound A is
A.

B.

C.

D.

Answer: C

- Watch Video Solution

87. Find the last product [D] in reaction sequence
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CHO}+\mathrm{CH}_{3}-\stackrel{\stackrel{-}{\mathrm{C}}}{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{COOC}_{2} \mathrm{H}_{5} \xrightarrow{\text { pyridine }}$
$A \xrightarrow{\mathrm{H}_{3} \mathrm{O}^{+}} \xrightarrow{\Delta} C \xrightarrow[\mathrm{OH}^{-} / \Delta]{\mathrm{NH}_{2}-\mathrm{NH}_{2}} D$
A. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\stackrel{\text { OH }}{\mathrm{CH}} \mathrm{C} \mathrm{C}-\mathrm{CH}_{3}$
B. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$
c.

D. $\mathrm{C}_{6} \mathrm{H}_{5}-\mathrm{CH}=\stackrel{\stackrel{-}{\|}}{\mathrm{C}} \mathrm{CH}-\mathrm{CH}_{3}$

Answer: B

- Watch Video Solution

88.

product
A.

B.

C.

D.

Answer: C

89. Which of the following compound do not undergo enolisation?

A.

B.

C.

D.

Answer: D

- Watch Video Solution

90. Arrange the following resonating structures in order of increasing stability

A. $I I>I>I V>I I I$
B. $I>I I>I V>I I I$
C. $I I I>I I>I V>I$
```
D. IV > II> III>I
```


Answer: A

- Watch Video Solution

91.

Major product of the reaction is

A.
B.

C.

D.

Answer: A

- Watch Video Solution

92. Calculate ΔH when 2 moles of solid benzoic acid undergo complete combustion at 300 K if
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(s)+\frac{15}{2} \mathrm{O}_{2}(g) \rightarrow 7 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(l)$
$\Delta U_{\text {reaction }}=-750 \mathrm{~kJ} / \mathrm{mole}$
A. $-1.247 k J$
B. $-2.494 k J$
C. $+2.494 k J$
D. +1.247 kJ

Answer: B

- Watch Video Solution

93. For the reaction, $A+2 B \rightarrow C$, the differential from of the rate law is:
A. $R=k[A]^{2}[B]^{1}$
B. $R=k[A][B]$
C. $R=k[A]^{1}[B]^{0}$
D. $R=k[A][B]^{-1}$

Answer: B

D Watch Video Solution

94. A 5.25% solution of a substance is isotonic with a 1.5% solution of urea (molar mass $=60 \mathrm{gmol}^{-1}$) in the same solvent. If the densities of both the solutions are assumed to be equal to $1.0 \mathrm{gcm}^{-3}$, molar mass of the substance will be:
A. $105.0 \mathrm{~g} \mathrm{~mol}^{-1}$
B. $210.0 \mathrm{~g} \mathrm{~mol}^{-1}$
C. $90.0 \mathrm{~g} \mathrm{~mol}^{-1}$
D. $15.0 \mathrm{~g} \mathrm{~mol}^{-1}$

Answer: B

95. The ionization constant of a weak electrolyte is 25×10^{-6} while the equivalent conductance of its 0.01 M solution is $19.6 \mathrm{~s} \mathrm{~cm}^{2} e q^{-1}$. The equivalent conductance of the electrolyte at infinite dilution (in S $\mathrm{cm}^{2} \mathrm{eq}^{-1}$) will be
A. 250
B. 196
C. 392
D. 384

Answer: C

- Watch Video Solution

96. $0.5 g$ of an organic compound on Kjeldahl's analysis gave enough ammonia to just neutralize $10 \mathrm{~cm}^{3}$ of $1 \mathrm{MH}_{2} \mathrm{SO}_{4}$. The percentage of nitrogen in the compound is
97. Number of crystal systems having only 2 types of bravais lattices $=x$, number of crystal system having at least two interfacial angles equal $=y$ and number of crystal systems having all the three edge lengths equal $=$ z. Then find the value of $x \times y \times z$.

- Watch Video Solution

98. The $p K_{a}$ values of ionisable groups in lysine are 2.18, 8.95 and 10.79 respectively. Find isoelectric point of lysine.

- Watch Video Solution

99. Among the following, total number of radioactive elements are In, Ac, At, Ba, Tc, Pm, Ta, Xe

- Watch Video Solution

100. In sample of excited hydrogen atoms, electron make transition from $\mathrm{n}=2$ to $\mathrm{n}=1$. Emitted quanta strike on a metal of work functio $[\phi] 4.2 e v$. Calculate the wavelength (in \AA) associated with ejected electrons having maximum kinetic energy.

- Watch Video Solution

101. $A+B \Leftrightarrow C+D$. If finally the concentrations of A an d B are both equal but at equilibrium concentration of D will be twice of that of A then what will be the equilibrium constant of reaction.
A. $\frac{9}{4}$
B. $\frac{9}{4}$
C. $\frac{1}{4}$
D. 4

Answer: C

102. Which of the following graphs is inconsistent with ideal gas behaviour ? (Assume $\mathrm{n}=$ constant)
A.

B.

c.

D.

Answer: C

103. The ratio of minimum to maximum wavelength in Balmer series is
A. 5: 9
B. 5: 36
C. 1:4
D. 3:4

Answer: A

- Watch Video Solution

104. A substance X is a compound of an element of group $1 A$ the substance X gives a violet colour in flame test, X is
A. NaCl
B. CsCl
C. KCl
D. none of these

- Watch Video Solution

105. Compare the stability of following carbocations .

(I)

A. $I I I>I I>I$
B. $I I>I I I>I$
C. $I I I>I>I I$
D. $I I>I>I I I$

Answer: C

106. How many structural isomeric alkene possible for molecule formula $C_{5} H_{10}$ which can show geometrical isomerism ?
A. 1
B. 2
C. 0
D. 3

Answer: A

107. Choose the correct product for the following reaction :

B.

c.

D.

Answer: C

108. The molecule which contains maximum number of lone Pair is
A. $I F_{7}$
B. $X e F_{6}$
C. XeF_{4}
D. XeF_{2}

Answer: D

- Watch Video Solution

109. The set containing only transition metals is
A. Ti, Nb, Ra
B. Pd,Ir, Ta
C. $\mathrm{Ag}, \mathrm{Au}, \mathrm{In}$
D. W,Pt,Po

Answer: B

- Watch Video Solution

110. The atomic numbers of elements A, B, C and D are $Z-1, Z, Z+1$ and $Z+$ 2 respectively. If B is a noble gas, choose the correct statement among the following statements :
I. A has higher electron affinity.
II. C exists in +2 oxidation state.
III. D is an alkaline earth metal.
A. (i) and (iii)
B. (ii) and (iii)
C. (i) and (iii)
D. (i),(ii) and (iii)

Answer: C

111. Dinitrogen is used
A. In manufacture of calcium cyanamide
B. In cryosurgery
C. As a refrigerant
D. All of these

Answer: D

Watch Video Solution

112. Regarding the oxidation states of elements of transition element the incorrect statement is
A. Mo^{+6} is more stable than Cr^{+6}
B. W^{+6} is more stable than Cr^{+6}
C. Oxoanion of $C r^{+6}$ in acidic medium is better oxidizing agent than oxides of $M o$ and W in +6 oxidation state .
D. Higher oxidation states are shown by metals when they are attached to π-acceptor ligands .

Answer: D

- Watch Video Solution

COOH

113. $\underset{\mathrm{COOH}}{\text { | }} \xrightarrow[(i i) 2 \mathrm{NH}_{3}]{(i) 2 \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}}[X] \xrightarrow{\mathrm{P}_{2} \mathrm{O}_{5}}$ what is Y ?

CN
A.
$C N$
$\mathrm{COOC}_{2} \mathrm{H}_{5}$
B.
$\mathrm{COOC}_{2} \mathrm{H}_{5}$

C.
$\mathrm{CH}_{2} \mathrm{NH}_{2}$
D.
$\mathrm{CH}_{2} \mathrm{NH}_{2}$

Answer: A

- Watch Video Solution

114. Gabriel phthalimide synthesis can be used to prepare:
A. Only primary aromatic amine
B. Only primary aliphatic amine
C. Only primary and secondary amine
D. All types of amine

Answer: B

- Watch Video Solution

115. Glucose is
A. Fructose
B. Galactose
C. Talose
D. Ribose

Answer: B

- Watch Video Solution

116. The temperatuer coefficient, of the emf, i.e., $\frac{d E}{d t}=-0.00065 \mathrm{Volt}$ $d e g^{-}$for the cell, $C d\left|C d C l_{2}(1 M)\right||A g C l(s)| A g$ at 25°.

Calcualte the entropy changes $\Delta S_{298 K}$ for the cell reaction, $\mathrm{Cd}+2 \mathrm{AgCl} \rightarrow \mathrm{Cd}^{2+}+2 \mathrm{Cl}^{-}+2 \mathrm{Ag}$
A. $-105.5 J K^{-1}$
B. $-105.2 J^{-1}$
C. $-75.7 \mathrm{JK}^{-1}$
D. $-125.5 J^{-1}$

Answer: D

- Watch Video Solution

117. Among the following the surfactant that will from micelles in aqueous solution at the lowest molar concentration at ambident condition is :
A. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{15} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Br}^{-}$
B. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{OSO}_{3}^{-} \mathrm{Na}^{+}$
C. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{COO}^{-} \mathrm{Na}^{+}$
D. $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{~N}^{+}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{Br}^{-}$

Answer: A

D Watch Video Solution

118. If heat of dissociation of $\mathrm{CHCl}_{2} \mathrm{COOH}$ is $0.7 \mathrm{kcal} / \mathrm{mole}$, the , ΔH for the reaction $\mathrm{CHCl}_{2} \mathrm{COOH}+\mathrm{KOH} \rightarrow \mathrm{CHCl}_{2} \mathrm{COOH}$ is $+\mathrm{H}_{2} \mathrm{O}$
A. $-13 k c a l$
B. $+13 k c a l$
C. -14.4 kcal
D. -13.7 kcal

Answer: A

- Watch Video Solution

119. Which of the following reactions is not involved in serpeck's process of leaching of $\mathrm{Al}_{2} \mathrm{O}_{3}$ from white bauxite ore?
A. $A l_{2} O_{3}+N_{2}+3 C \xrightarrow{\Delta} 2 A l N+3 C O$
B. $\mathrm{SiO}_{2}+\mathrm{C} \xrightarrow{\Delta} \mathrm{Si}+2 \mathrm{CO}$
C. $\mathrm{Na}_{2} \mathrm{CO}_{3}+\mathrm{Al}_{2} \mathrm{O}_{3} \xrightarrow{\Delta} 2 \mathrm{NaAlO}_{2}+\mathrm{CO}_{2}$
D. $2 \mathrm{Al}(\mathrm{OH})_{3} \xrightarrow{\Delta} \mathrm{Al}_{2} \mathrm{O}_{3}+3 \mathrm{H}_{2} \mathrm{O}$

Answer: C

120. For a reaction $A \rightarrow B, E_{a}=10 \mathrm{~kJ} / \mathrm{mol}, \Delta H=5 \mathrm{~kJ} / \mathrm{mol}$. Thus potential energy profile for this reaction is

C. Reaction progress \rightarrow
D.

Answer: B

121. The amount (in grams) of sucrose (mol.wt. $=342 \mathrm{~g}$) that should be dissolved in 100 g water in order to produce a solution with a $105.0^{\circ} \mathrm{C}$ difference between the boiling point and freezing point is (Given that $k_{f}=1.86 \mathrm{Kkgmol}^{-1}$ and $k_{b}=0.52 \mathrm{Kkgmol}^{-1}$ for water) Report your answer by rounding it up to to the nearest whole number.

- Watch Video Solution

122. Narcotics are chemical substances which produce sleep and unconsciousness. Morphine diacetate is most widely used analgesic . How many double bond equivalents are present in morphine diacetate ?

- Watch Video Solution

123. Total number of low spin complexes are $\left[\mathrm{Fe}(\mathrm{CN})_{6}^{3-},\left[\mathrm{Co}\left(\mathrm{NO}_{2}\right)_{6}\right]^{3-},\left[\mathrm{FeF}_{6}\right]^{3-}\left[\mathrm{IrF} \mathrm{F}_{6}\right]^{3-},\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{6}\right]^{3+},\left[\mathrm{Co}\left(\mathrm{H}_{2}\right.\right.\right.$

124.

$\xrightarrow{\text { Cold } \mathrm{KMnO}_{4}}(y)$ product

Find the value $\frac{x+y}{2}$ (include sterio isomers)

- Watch Video Solution

125. 245 g impure sample of KClO_{3} on heating gives $12 g \mathrm{O}_{2}(\mathrm{~g})$ according to $2 \mathrm{KClO}_{3}(s) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$ Calculate \% purity of sample ?

- Watch Video Solution

126. Which of the following is a positive overlap that leads bonding ?

(II)
(III)
$(\mathrm{IV}) \xrightarrow[+-\infty+\infty]{+\infty}$
A. I and II
B. II and III
C. III and IV
D. I and IV

Answer: B

- Watch Video Solution

127. Which among the following compounds does not act as reducing agent?
A. $\mathrm{H}_{2} \mathrm{O}$
B. $H_{2} S$
C. $\mathrm{H}_{2} \mathrm{Se}$
D. $\mathrm{H}_{2} \mathrm{Te}$

Answer: A

128. The initial concentration of X and Y were 2 and 4 mole / L respectively . For the following equilibrium $X+2 Y \Leftrightarrow Z$ which of the following relationship among equilibrium concentrations of x, y and z is not feasible?
A. $[X]<[Z]$
B. $[X]<[Y]$
C. $[X]>[Y]$
D. $[Y]>[Z]$

Answer: C

- Watch Video Solution

129. Using the Gibbs energy change, $\Delta G^{\circ}=+63.3 k J$, for the following reaction,
$\mathrm{Ag}_{2} \mathrm{CO}_{3} \Leftrightarrow 2 \mathrm{Ag}^{+}(\mathrm{aq})+\mathrm{CO}_{3}^{2-}$
the $K_{s p}$ of $\mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s})$ in water at $25^{\circ} \mathrm{C}$ is
$\left(R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right)$
A. 7.9×10^{-2}
B. 8.0×10^{-12}
C. 2.9×10^{-3}
D. 3.2×10^{-26}

Answer: B

- Watch Video Solution

130. Which set represent 1st order reactions out of (I), (II) and (III)
(I)

(II)

A. I, II and III
B. I and II
C. II and III
D. I and III

Answer: B

- Watch Video Solution

131. Which one is the wrong statement ?
A. Anhydrous $A l C l_{3}$ exists as $A l_{2} C l_{6}$ (dimer)
B. $A l_{2} C l_{6}$ contains $3 c-4 e^{-}$bonds
C. Anhydrous AlCl_{3} fumes in moist air
D. Anhydrous $A l C l_{3}$ is ionic

Answer: D

132. When MnO_{2} is fused with KOH , a coloured compound is formed. The product and its colour is
A. $K_{2} \mathrm{MnO}_{4}$, green
B. KMnO_{4}, purple
C. $\mathrm{Mn}_{2} \mathrm{O}_{3}$ brown
D. MnO_{2}, black

Answer: A

- Watch Video Solution

133. A metal is illumimated by light of two different wavelength 248 nm and 310 nm . The maximum speeds of the photoelectrons corresponding in these wavelength are u_{1} and u_{2} respectively. If the ratio $u_{1}: u_{2}=2: 1$ and $h c=1240 \mathrm{eVnm}$, the work function of the metal is nearly
A. 3.7 eV
B. 3.2 eV
C. 2.8 eV
D. 2.5 eV

Answer: A

D Watch Video Solution

134. The number and type of bonds between two carbon atoms in $\mathrm{CaC} \mathrm{C}_{2}$ are:
A. one sigma and one pi bonds
B. one sigma and two pi bonds
C. one sigma and half pi bond
D. one sigma bond

Answer: B

135. For the reaction:
$\mathrm{X}_{2} \mathrm{O}_{4}(\mathrm{l}) \rightarrow 2 \mathrm{XO}_{2}(\mathrm{~g})$
$\Delta U=2.1 \mathrm{cal}, \Delta S=20 \mathrm{cal} K^{-1} \mathrm{at} 300 \mathrm{~K}$
Hence ΔG is
A. 9.3 kcal
B. 2.7 kcal
C. -2.7 kcal
D. -9.3 kcal

Answer: C

- Watch Video Solution

136. A balloon filled with oxygen is placed in a tank full of hydrogen gas at the same pressure is pricked with a sharp pointed needle. The volume of
balloon just after the pricking would be
A. Shrunk
B. Enlarge
C. Completely collapsed
D. remains unchanged in size

Answer: B

- Watch Video Solution

137. In the Hall-Heroult process for the extraction of $A l$, which of the following statements is false?
A. CO and CO_{2} are produced in this process
B. $A L_{2} O_{3}$ is mixed with $C a F_{2}$ which lowers the melting point of the mixture and brings conductivity
C. $A l^{3+}$ is reduced at the cathode to from Al
D. $N a_{3} A l F_{6}$ helps in increasing the melting point of the mixture

Answer: D

- Watch Video Solution

138. Which of the following acts as an oxidising as well as reducing agent
A. $\mathrm{Na}_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{SO}_{4}$
C. HNO_{3}
D. HNO_{2}

Answer: D
139. Determine the order of stability of the following resonating structure.
Q. 14 Determine the order of stability of the following resonating structure.

A. i > ii $>$ iii
B. iii > ii >
C. $\mathrm{i}>\mathrm{iii}>\mathrm{ii}$
D. ii > i> iii
A. $i>i i>i i i$
B. $i i i>i i>i$
C. $i>i i i>i i$
D. $i i>i>i i i$

Answer: A

- Watch Video Solution

140. The ionization energies of Li and Na are $520 \mathrm{kJmol}^{-1}$ and $495 \mathrm{kJmol}^{-1}$ respectively. The energy required to convert all the atoms present in 7 mg of Li vapours and 23 mg of sodium vapours to their respective gaseous captions respectively are :
A. $52 \mathrm{~J}, 49.5 \mathrm{~J}$
B. $520 \mathrm{~J}, 495 \mathrm{~J}$
C. $49.5 \mathrm{~J}, 52 \mathrm{~J}$
D. $495 \mathrm{~J}, 52 \mathrm{~J}$

Answer: B

(Watch Video Solution

141. In the following reaction sequence, structures of P and Q, are respectively

A.

B.

C.

D.

Answer: D

- Watch Video Solution

142. Provide the systematic name of the compound shown

A. 4 - Butyl-2 ethyl-1 methylcycloptane
B. 1-Butyl-4 ethyl-3 methylcycloptane
C. 2-Butyl-4 ethyl-1 methylcycloptane
D. 4-Butyl-1 ethyl-2 methylcycloptane

Answer: D

- Watch Video Solution

143. Which reagent can be used to convert a carboxylic acid chloride into a ketone ?
A. Chromic acid
B. PCP
C. Diborane, hydrogen peroxide
D. An organolithium compound

Answer: D

144. Which of the following can not be made by reduction of ketone or aldenhyde with NaBH_{4} ?
A. 1 - Butanol
B. 2-Butanol
C. 2-Methyl-1-propanol
D. 2-Methyl-2-propanol

Answer: D

- Watch Video Solution

145. which of the following statement is correct for the reactivity in $S_{N} 2$ reaction?

B.
C.

D.
 is more reactive than

Answer: B

- Watch Video Solution

146. pH of the anodic solution of the following cell is $P t, H_{2}(1 \mathrm{~atm})\left|H^{+}(x M)\right|\left|H^{+}(1 M)\right| H_{2}(1 \mathrm{~atm}), P t$ if $E_{\text {cell }}=0.2364 \mathrm{~V}$.

- Watch Video Solution

147. The vapour pressure of pure water at $26^{\circ} \mathrm{C}$ is 25.5 torr. . The vapour pressure of a solution which contains 20.0 glucose, $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$, in 100 g water (in torr) is ?
148. The number of geometric isomers of the complex $\mathrm{Cr}\left(\mathrm{NH}_{3}\right)_{3} \mathrm{Cl}_{3}$ are

- Watch Video Solution

149. A hydrocarbon $(A) C_{n} H_{2 n-4}$ on ozonolysis gives $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCH}_{2} \mathrm{CHO}, 2 \mathrm{OHCCH}_{2} \mathrm{CH}_{2} \mathrm{CHO}$ and $\mathrm{CH}_{3} \mathrm{COCH}_{3}$ The value of n is

- Watch Video Solution

150. The gas phase decomposition of dimethylether follows first order kinetics $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{3}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}_{(g)} \quad$ The reaction is carried out in constant volume container at $500^{\circ} \mathrm{C}$ and has a half - life of 14.5 . Initially only dimethylether is present at a pressure of 0.40 atm . The total pressure of the system after 12 min is $\frac{x}{100} \mathrm{~atm}$. The value of x is [Given $10^{0.25}=1.778$]
\square
