

CHEMISTRY

BOOKS - NTA MOCK TESTS

JEE MOCK TEST 21

Chemistry

1. When 10ml of 0.1M acetic acid $(pK_a = 5.0)$ is titrated against 10ml of 0.1M ammonia solution $(pK_b = 5.0)$, the equivalence point occurs at pH

A. 5

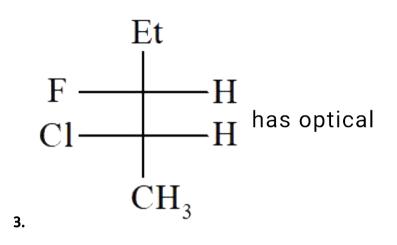
B. 6

C. 7

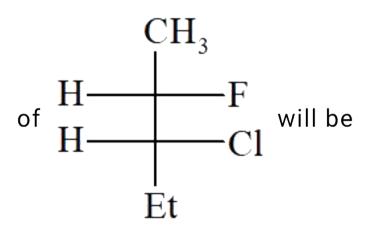
D. 9

Answer: C

- 2. Choose the incorrect statements.
 - A. $BeCO_3$ is preserved in an atmosphere of CO_2 as it is thermaly


least stable.

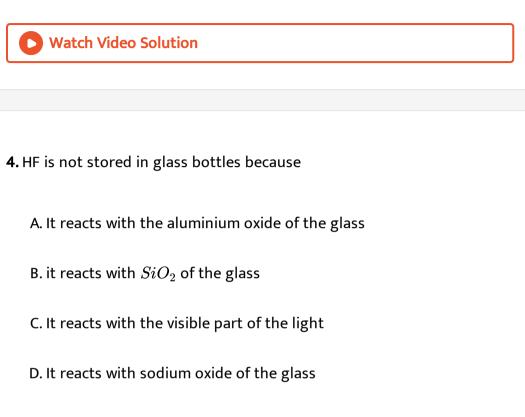
B. BeF_2 forms a complex compound with excess NaF, in which the


complex entity containing Be, is a cation.

- C. Beryllium dissolves in an alkali to form $\left[Be(OH)_4
 ight]^{2-}$ ion.
- D. Beryllium exhibits no diagonal relationship with sodium.

Answer: B

rotation $-45\,^\circ$, so optical rotation of

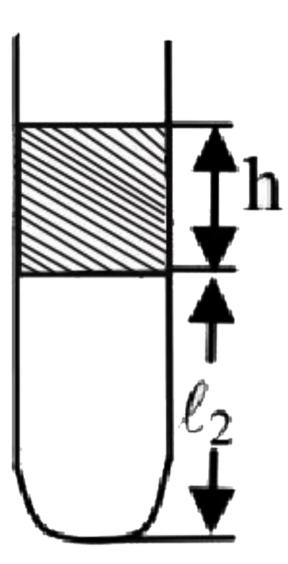

A. $+45^{\,\circ}$

 B.0°

C. -45°

D. can not be predicted

Answer: D



Answer: B

5. An air column closed in a tube sealed at one end by a Hg column having height h. When the tube is placed with open end down, the height of the air column lis l_1 . If the tube is turned so that its open end is at the

top, the height of the air column is l_2 . What is the atmospheric pressure $(P_0).$

A.
$$P_0=rac{h(l_1+l_2)}{(l_2-l_1)}cm$$
 of Hg

B.
$$P_0=rac{h(l_1-l_2)}{(l_2+l_1)}cm$$
 of Hg

C. 76 cm of Hg

D.
$$P_0=rac{h(l_2+l_1)}{(l_2-l_1)}cm$$
 of Hg

Answer: D

Watch Video Solution

6. 2-Methylbutan-2-ol can be obtained by the acid catalyzed hydration of

A. $CH_3CH_2CH = CH_2$

- $\mathsf{B}.\,CH_3CH=CHCH_3$
- $\mathsf{C}.\,(CH_3)_2C=CHCH_3$
- D. Either of the three

Answer: C

7. The pyrimidine bases present in DNA are

A. Cytosin and Uracil

B. Cytosine and Thymine

C. Cytosin and Guanine

D. Cytosine and Adenine

Answer: B

Watch Video Solution

8. Which of the following is not isostructural with $SiCl_4$?

A.
$$SO_4^{2-}$$

B. PO_4^{3-}
C. NH_4^+
D. SCl_4

Answer: D

- **9.** For the reaction, 2A+B
 ightarrow C+D, the order of reaction is
 - A. One with respect [B]
 - B. Two with respect to [A]
 - C. Three
 - D. Cannot be predicted

Answer: D

Watch Video Solution

10. In the reaction

 $CH_3COOH \xrightarrow{LiAlH_4} (A) \xrightarrow{I_2 + NaOH} (B) \xrightarrow{Ag(\operatorname{Dust})} (C)$, the final product C

is:-

A. C_2H_5I

 $\mathrm{B.}\, C_2 H_5 OH$

 $\mathsf{C}.\, C_2 H_2$

D. CH_3COCH_3

Answer: C

Watch Video Solution

11. Equilibrium constant K_p for the reaction $CaCO_3(s) \Leftrightarrow CaO(s) + CO_2(g)$ is 0.82 atm at $727^{\circ}C$.

If 1 mole of $CaCO_3$ is placed in a closed container of 20 L and heated to this temperature, what amount of $CaCO_3$ would dissociate at equilibrium?

A. 0.2 g

B. 80 g

C. 20 g

D. 50 g

Answer: C

Watch Video Solution

12. $TiAl(SO_4)_2$. xH_2O is bcc with 'a' =1.22 nm. If the density of the solid is 2.32g/cc, then the value of x is (Given $:N_A=6 imes10^{23}$), at . Mass : Ti=204, Al=27, S=32).

A. 2

B.4

C. 47

D. 70

Answer: C

13. In compound $O_2SC(NH_2)_2$, the geometry around S and N are respectively.

A. trigonal planar, trigonal pyramidal

B. tetrahedral, pyramidal

C. trigonal planar, tetrahedral

D. linear, pyramidal

Answer: A

> Watch Video Solution

14. Geometrical shapes of the complex formed by the reaction of Ni^{2+}

with Cl^{Θ}, CN^{Θ} and H_2O are :

A. Octahedral, tetrahedral and square planar

B. Tetrahedral , square planer and octahedral

C. Square planer, tetrahedral and octahedral

D. Octahedral, square planer and octahedral

Answer: B

15. Slope of V_0 vs v curve is (where V_0 = Stopping potential, v=subjected freqency)

A. e

B. $\frac{h}{e}$

 $\mathsf{C}.\,\phi$

 $\mathsf{D}.\,h$

Answer: B

16. The value of $\log_{10} K$ for a reaction $A \Leftrightarrow B$ is (Given: $\Delta_f H_{298K}^{\Theta} = -54.07 k J mol^{-1}$, $\Delta_r S_{298K}^{\Theta} = 10 J K^{-1} mol^{-1}$, and $R = 8.314 J K^{-1} mol^{-1}$ A. 5 B. 10

C. 95

D. 100

Answer: B

Watch Video Solution

17. Aldehyde with NH_2NH_2 forms

A. Hydrazone

B. Aniline

C. Nitrobenzene

D. none of these

Answer: A

18. Gallium arsenide is purified by _____.

A. van-Arkel method

B. Zone-refining method

C. Electrolytic method

D. Liquation

Answer: B

19. In the nucleophilic substitution reactions $(S_N 2 \text{ or } S_N 1)$, the reactivity of alkyl halids follows the sequence

A.
$$R-I > R-Br > R-Cl > R-F$$

B. $R-Cl > R-F > R-Br > R-I$
C. $R-F > R-Cl > R-Br > R-I$

 $\mathsf{D}.\,R-I > R-F > R-Cl > R-Br$

Answer: A

Watch Video Solution

20. At a constant temperature, which of the following aqueous solutions

will have the maximum vapour pressure?

 $ig(MolwtNaCl = 58.5, H_2SO_4 = 98.0gmol^{-1}ig)$

A. 1 molal *NaCl*(aq)

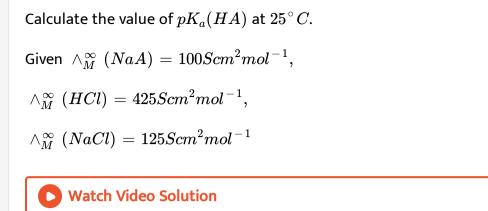
B.1 molar NaCl (aq)

C. 1 molal H_2SO_4 (aq)

D. 1 molar H_2SO_4 (aq)

Answer: A

Watch Video Solution


21. First and second ionization energies of magnesium are 7.646 and 15.035 eV respectively. The amount of energy in kJ/mol needed to convert all the atoms of Magnesium into Mg^{2+} ions present in 12 mg of magnesium vapours is: (Report your answer by multiplying with 10 and round it upto nearest integer)

(Given $1eV = 96.5kJmol^{-1}$)

Watch Video Solution

22. Molar conductivity of aqueous solution of HA is $200Scm^2mol^{-1}$, pH

of this solution is 4

23. How many of the following ethers CANNOT be prepared by Williamson's synthesis?

 $CH_3OCH_2CH_3, C_6H_5OCH_3, (C_6H_5)_2O, (CH_3)_3COCH_3, (C_2H_5)_2O, (CH_3)_3COCH_3, (C_2H_5)_3O, (CH_3)_3COCH_3, (C_2H_5)_3COCH_3, (C_2$

24. How many of the following groups if substituted at o- and /or ppostions of chlorobenzene, increase its reactivity towards nucleophilic substitution?

$$-CN, -CH_3, -NH(CH_3), -COOH, -NO_2, -OCH_3.$$

25. How many of the following are lanthanides?

Uranium, praseodymium, erbium, gadolinium, cerium, hafnium, osmium,

iridium