MARKING SCHEME SET 55/1/MT

Q. No.	Expected Answer / Value Points	Marks	Total
			Marks
	Section A	I	
Set1,Q1 Set2,Q5 Set3,Q4	For a positive charge]	1	1
Set1,Q2 Set2,Q4 Set3,Q5	Convex lens OR Converging lens	1	1
Set1,Q3 Set2,Q2 Set3,Q1	A current is said to be wattless if the average power consumed over one complete cycle is zero. Alternatively, In a a.c. circuit containing pure inductor or pure capacitor the phase difference between voltage and current is $\pi/2$. Hence $\cos \phi = 0$ and no power is dissipated even though a current is flowing in the circuit. This current is referred as wattless current. Alternatively, The component of the current perpendicular to the applied voltage $(I_v \sin \phi)$ does not contribute power in an LCR circuit. Hence it is referred as wattless current.	1	1
Set1,Q4 Set2,Q3 Set3,Q2	Repeaters are used to increase/extend the range of a communication system.	1	1
Set1,Q5 Set2,Q1 Set3,Q3	B has higher resistivity. Alternatively, B	1	1
9.4.01	Section B	1	
Set1,Q6 Set2,Q8 Set3,Q9	Formula1/2Ratio of the de-Broglie wavelengths1 1/2		
	De-Broglie wavelength $\lambda = \frac{h}{\sqrt{2mqV}}$	1⁄2	
	Ratio of de-Broglie wavelengths of deuterons and \propto - particle = $\frac{\lambda_D}{\lambda_D} = \frac{\sqrt{2m_{\alpha}q_{\alpha}V}}{\sqrt{2m_{\alpha}q_{\alpha}V}}$	1⁄2	
	$=\frac{\lambda_{\infty} \sqrt{2m_d q_d V}}{\sqrt{2\times 4m_p \times 2qV}}$	1⁄2	
	$= 2^{\sqrt{2 \times 2m_p \times q \times v}}$	1⁄2	2

Set1,Q7 Set2,Q9 Set3,Q10	Identifying the transitions $\frac{1}{2} + \frac{1}{2}$ Calculating the ratio of shortest wavelengths1		
	Lyman series - C and E Blamer Series – B and D	1/2 1/2	
	Ratio of the shortest wavelength $\frac{\lambda_L}{\lambda_B} = \frac{3}{10} = 0.3$ <i>Alternatively</i>	1	
	Ratio of the shortest wavelength $\frac{\lambda_L}{\lambda_B} = \frac{n_1^2}{n_2^2} = \frac{1}{4}$ [<u>Note:</u> The student may write that Lyman and Balmer series are defined for the hydrogen atom and the given energy level values do not correspond to hydrogen. Hence one cannot identify the Lyman and Balmer series in the given case. Full credit may be given for this type of answer]		2
Set1,Q8 Set2,Q10 Set3,Q7	Determining the value of modulation Index1Value of μ when amplitude is zero $\frac{1}{2}$ Reason for $\mu < 1$ $\frac{1}{2}$		
	$\begin{array}{l} A_c + A_m = 10 \ V \\ A_c - A_m = 2 \ V \end{array}$	1/2	
	On solving we get Modulation Index $\mu = \frac{A_m}{A_c} = \frac{4}{6} = \frac{2}{3}$ If the value of minimum amplitude $A_c - A_m = 0$, $A_c = A_m = 5V$	1⁄2	
	Then $\mu = \frac{A_m}{A_c} = 1$ μ is kept less than one to avoid distortion.	1/2 1/2	2
Set1,Q9 Set2,Q6 Set3,Q8	Diagram1Relation between refractive index and angle of the prism1		
	$A = r_1 + r_2 $ (Here $r_2 = 0$)	1	
Pag	ge 2 of 16 Final draft 17/03/	15 04:00 p	.m.

	$A = r_1$ Refractive index of the material is $\mu = \frac{\sin i}{\sin r} = \frac{\sin 2A}{\sin A}$ $(= 2\cos A)$	1/2 1/2	
	OR		2
	Image for the first lens1/2Formula for the second lens and substituting correct values1/2Calculating the distance between initial and final positions1		
	$\frac{\text{For convex lens}}{u = -40 \text{ cm}, \text{ f} = +30 \text{ cm}}$ $\therefore \frac{1}{30} = \frac{1}{v} - \frac{1}{-40}$	1/2	
	\therefore v = 120 cm	, 2	
	On introducing concave lens of focal length $f = -50 \text{ cm}$ f = -50 cm, $u = +(120-20) cm = +100 cm$	1⁄2	
	$\therefore \frac{1}{-50} = \frac{1}{v} - \frac{1}{100}$		
	$\therefore \frac{1}{v} = \frac{1}{100} - \frac{1}{50} = -\frac{1}{100}$	1⁄2	
	$\therefore v = -100 \text{ cm}$		
	Change in the position of the image $= 200$ cm to the left of its original position.	1⁄2	2
Set1,Q10 Set2,Q7 Set3,Q6	Calculation of potential gradient1Calculation of unknown resistance R1		2
	Current through the wire $I = \frac{1}{\frac{R+r}{R+15}}$ = $\frac{2}{R+15}$	1⁄2	
	\therefore Potential gradient = $\left(\frac{2}{R+15}\right) \times \frac{15}{100}$	1⁄2	
	Now E_2 = Potential drop across 30 cm		
	$\therefore 75 \times 10^{-3} = \left(\frac{2}{R+15}\right) \times 0.15 \times 30$	1⁄2	
	$\therefore R = 105 \Omega$	1⁄2	2

Page 3 of 16

	Section C	•	-
Set1,Q11 Set2,Q20 Set3,Q17	Formulae1Calculating energy loss1 ½Source of energy loss½		
	We have, energy stored $=\frac{1}{2} \frac{Q}{c^2}$ and Equivalent Capacitance $= C_1 + C_2$ =(600+300) pF	1/2 1/2	
	Charge on the capacitor = $Q = 600 \times 200 \times 10^{-12}$ = $12 \times 10^{-8} C$	1⁄2	
	Initial Energy $=\frac{1}{2} \frac{Q^2}{C} = \frac{1}{2} \frac{Q^2}{600 \times 10^{-12}}$	1⁄2	
	Final Energy $=\frac{1}{2} \frac{Q^2}{900 \times 10^{-12}}$		
	Loss in energy $=\frac{1}{2} \frac{144 \times 10^{-16}}{10^{-12}} \left[\frac{1}{600} - \frac{1}{900}\right]$		
	$= 4 \times 10^{-6} \text{ J}$	1/2	
	The source of energy loss is the energy converted into heat due to sharing of charge between the two capacitors. (Also accept: heat produced) [Alternatively: Also accept if the student calculates directly.]	1⁄2	3
Set1,Q12 Set2,Q21 Set3,Q18	Production of i) microwaves $\frac{1}{2}$ ii) infrared waves $\frac{1}{2}$ Two uses of each wave $(\frac{1}{2}+\frac{1}{2}) \times 2$		
	 Microwaves are produced by special vacuum tubes called Klystrons / Magnetrons / Gun diodes / Point contact diodes. (any one) 	1/2	
	Uses: Radar system, Ovens, Communication (any two)	1/2 + 1/2	
	ii) Infrared waves are produced by vibration of atoms and hot bodies.	1⁄2	
	Uses: Physical therapy, remote switches in household electronic systems, detectors in earth satellites (any two)	1/2 + 1/2	3
Set1,Q13 Set2,Q22 Set3,Q19	Drawing circuit diagrams of a p - n junction diode in i) forward bias ii) reverse bias ^{1/2} ^{1/2}		
	Drawing the characteristic curves $\frac{1}{2} + \frac{1}{2}$ Describing the terms minority carrier injection and break down voltage $\frac{1}{2} + \frac{1}{2}$		
Pag	the 4 of 16 Final draft 17/03/1	5 04:00 p	.m.

	Magnetic field out of the paper Exit Port Charged particle D ₁ OSCILLATOR	1	
	A charged particle can be accelerated to very high energy by subjecting it to an oscillating electric field applied between the dees. When the charged particle is subjected to a uniform magnetic field, it moves in a circular path. Both the fields are perpendicular to each other. The time for one revolution of the charged particle is independent of its speed or radius of its orbit. mv^2	1	
	$Bqv = \frac{r}{r}$ $v = \frac{Bqr}{m}$ $\therefore T = \frac{2\pi r}{v}$	1⁄2	
	$\therefore T = \frac{2\pi m}{Bq}$	1⁄2	3
Set1,Q17 Set2,Q16 Set3,Q15	Expression for resultant intensity1Finding intensity at the given point on the screen2Resultant Intensity $I = 4I_o \cos^2\left(\frac{\phi}{2}\right)$ Alternatively : $I_R = I_o + I_o + 2I_o \cos\phi$ When the path difference is λ , phase difference is 2π $\therefore I_R = I_o + I_o + 2I_o$ $= 4I_o = K$ If path difference is $\frac{\lambda}{4}$, phase difference is $\frac{\pi}{2}$ $\therefore I_R = I_o + I_o + 0$ $= 2I_o = \frac{K}{2}$	1 1/2 1/2 1/2 1/2	2
Set1,Q18 Set2,Q17 Set3,Q16	Writing three factors 1 ½ Explanation to overcome these factors 1 ½		3
	 Three factors that prevent us from sending the signals directly are: (i) Size of antenna (ii) Power radiated by the antenna 	1/2 1/2	

	(iii) Intermixing of signals	1/2	
	 To overcome these factors (i) Size of antenna should be comparable to wavelength (around λ/4). (ii) Power depends inversely on λ² - Power radiated increases with decrease of wavelength. (iii) Message signal should be used to modulate a high frequency carrier wave so that a band of frequencies can be alloted to each message signal. 	1/2 1/2 1/2	3
Set1,Q19 Set2,Q18 Set3,Q21	(a) Binding Energy/nucleon graph 1 ¹ / ₂ Property ¹ / ₂ (b) Finding Atomic number and Mass number of A 1 (a) (a) (a) Nuclear forces are short ranged / saturated (any one) (b) $_{70}A^{180} \xrightarrow{\alpha}{\rightarrow} _{68}A_1^{176} \xrightarrow{\beta^-}{\rightarrow} _{69}A_2^{176} \xrightarrow{\gamma}{\rightarrow} _{69}A_3^{176}$ Mass number of A is 180 Atomic number of A is 70 Alternatively $_{4180} \xrightarrow{\alpha}{\rightarrow} _{476} \xrightarrow{\beta^+}{\rightarrow} _{4176} \xrightarrow{\gamma}{\rightarrow} _{4176} \xrightarrow{4176}$	$1\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	
	Mass number of A is 180 Atomic number of A is 72		3
Set1,Q20 Set2,Q19 Set3,Q22	Diagram 1/2 Explanation 1 Graph 1/2 Understanding graph using Malus' law 1		
		1⁄2	

17/03/15 04:00 p.m.

	When light from an ordinary source passes through a polaroid sheet P_1 , its intensity is reduced by half. When the second polaroid (identical to the first one) is rotated with respect to the first one, the intensity of the light transmitted by the second polaroid varies from zero to maximum.		
	$\mathbf{\theta} \rightarrow \mathbf{\theta}$	1/2	
	According to Mauls's law when the angle between the two polaroids is θ , the intensity of the transmitted light by the second polaroid is given by the relation $I = I \cos^2 \theta$	1	
	As θ keep on changes, intensity of the transmitted light by the second polaroid changes.	1	3
Set1,Q21 Set2,Q14 Set3,Q11	(a) Calculation of current1(b) Voltage across resistor and capacitor $\frac{1}{2} + \frac{1}{2}$ Paradox and its resolution $\frac{1}{2} + \frac{1}{2}$		
	(a) Current in the circuit		
	$I = \frac{\sqrt{100^{2} + \left(\frac{1}{C\omega}\right)^{2}}}{\sqrt{100^{2} + \left(\frac{1}{100} \times 10^{-6} \times 2\pi \times 50\right)^{2}}}$	1/2	
	$=\frac{2.2}{\sqrt{2}} A = 1.55 A$	1⁄2	
	(b) Voltage across the resistor = 100×1.55 V = 155 volt Voltage across the capacitor = 100×1.55 V = 155 volt = 155 volt	1/2 1/2	
	Yes The sum of the two voltages is greater than 220 V but the voltage across the resistor and the capacitor are not in phase.	1/2 1/2	3
Set1,Q22 Set2,Q15 Set3,Q12	Explanation of drift of electrons1Definition $\frac{1}{2}$ Showing $\vec{j} = \sigma \vec{E}$ 1 $\frac{1}{2}$		

	When metal conductor is subjected to a certain potential the electron get accelerated due to electric field. Each electron experiences acceleration for an average time, τ , called the relaxation time. It then undergoes a collision and its velocity again becomes random. The average(drift) velocity of all the electrons contributes to the flow of current.	1	
	The average velocity of electrons, acquired through their acceleration for a time τ is called drift velocity. $\nu_d = \frac{eE}{m}\tau$	1⁄2	
	Current density		
	$j = \frac{I}{A}$		
	$=\frac{neAv_d}{A}$	1⁄2	
	$= ne\left\{\frac{eE}{m}\tau\right\}$		
	$=\left(\frac{ne^2\tau}{m}\right)E$	1⁄2	
	$\vec{i} = \sigma \vec{F}$	1/2	
	$\cdots f = 0 E$		3
Set1 023	Section D		
Set2,Q23 Set3,Q23	The qualities displayed by Deepika, Ruchika and the teacher2Principle of galvanometer1Shape of the magnets and why is it so designed1		
	a) The values displayed by Deepika and Ruchika are their inquisitiveness for practical knowledge.	1	
	The teacher displayed concern for the students.b) Principle: When a current passes through a coil, placed in a uniform magnetic field, it experiences a torque.	1	
	a) The pole pieces of the magnet are given a conceve shape	1	
	This is done to produce a radial magnetic field.	$\frac{1/2}{1/2}$	
		· -	4
Cat1 004	Section E		
Set1,Q24 Set2 025	Flux through the flat faces 1 1/2		
Set3,Q25	Flux through the curved surface 1		
	Net flux 1 The charge inside the cylinder 1 1/2		
	(i) Flux = $\int \vec{E} \cdot d\vec{s}$	1/2	
	Flux through the flat surface on the:	1/	
	1. Fight side = E_0 , π r ⁻ (outwards) ii left side = $F_0 \pi r^2$ (outwards)	¹ /2 1/2	
Pag	$\begin{array}{c} \text{ in finite - 1}_{0}, in finite - $	15 04:00 1	p.m.
rage 11 01 10 Final draft 17/03/13			

	(ii) Flux through the curved surface $= 0$	1/2	
	[As electric field and area vector are perpendicular to each other]	1⁄2	
	Net outward flux $= \pi r^2 E_o + \pi r^2 E_o + 0 = 2\pi r^2 E_o$	1	
	Charge inside the cylinder = Net flux $\times \varepsilon_o$ = $(2 \pi r^2 E_o) \times \varepsilon_o$ = $2 \pi \varepsilon_o r^2 E_o$	1/2 1/2 1/2	
	OR		5
	Electric field outside the plates $\frac{1}{2} + \frac{1}{2}$ Electric field between the plates $\frac{1}{2}$ Capacitance Expression $1 \frac{1}{2}$ Effect on electric field on introducing the dielectric1Effect on Capacitance with dielectric1		
	(a) Calculation of electric field		
	(i) Electric field outside the plates: $\frac{\sigma}{2\varepsilon_0} + \frac{(-\sigma)}{2\varepsilon_0} = 0$ on both the sides of the capacitor.	1/2 + 1/2	
	(ii) Electric fields between the two plates		
	due to the left plate = $\frac{\sigma}{2\epsilon_0}$ towards right		
	due to the right plate = $\frac{\sigma}{2\varepsilon_0}$ towards right		
	$\therefore \text{ Net Electric field} = \frac{\sigma}{\varepsilon_0} \text{ (towards right)}$	1⁄2	
	Capacitance, $C = \frac{Q}{V}$	1⁄2	
	$=\frac{Q}{Ed}=\frac{\sigma A}{(\frac{\sigma d}{c})}$	1⁄2	
	$=\varepsilon_0 A/d$	1⁄2	
	(b) (i) When a dielectric slab is introduced, the Electric field decreases to $\frac{E}{K} = \frac{\sigma}{K\varepsilon_0}$ where K is the dielectric constant. This is because of the (oppositely directed) field due to the polarized dielectric.	1	
	(ii) Capacitance with dielectric increases by a factor K because the electric field (and hence p.d.) decreases by a factor K.	1	5
Set1,Q25 Set2,Q26 Set3,Q24	(a) Main considerations $1 + 1$ (b) Ray diagram1Magnifying Power1(c) Advantages (any two) $\frac{1}{2} + \frac{1}{2}$		

	[Also accept if the student draws the following diagram]		
	B'' B O B K E Eyepiece O B K E A O B K E A O B K E A O B K E O B C C C C C C C C C C C C C C C C C C		
	(b) S = Size of image of a point object in the image plane = $\nu \left(\frac{1.22 \lambda}{d}\right)$ Minimum separation between two distinctly seen points in the object plane = $\frac{S}{Magnifying Power}$	1/2	
	$= \frac{S}{\left(\frac{V}{f}\right)} = \frac{1.22 f \lambda}{D}$ [Also give this mark if the student writes (i)Minimum separation = $\frac{1.22 f \lambda}{D}$ Or (ii)Minimum separation equals the separation at which their images are	1	
	just resolved Or (iii) Minimum separation corresponds to 'limit of resolution'.]		
	Resolving power $=$ $\frac{1}{d} = \frac{2\mu \sin \theta}{1.22 \lambda}$	1⁄2	
	[Also accept: Resolving power $\propto \frac{1}{(\text{minimum seperation})}$] Resolving power can be increased by (i) increasing the aperture of the objective (ii) using a medium with higher refractive index (iii) by decreasing the wavelength of the light used for illuminating the		
	object [Any two]	1	5
Set1,Q26 Set2,Q24 Set3,Q25	(a) Meaning of mutual inductance1(b) Expression for the mutual inductance of the arrangement2(c) Expression for the emf induced2		
	(a) Consider two long co-axial solenoids. When a varying current flows through one coil, an induced emf is set up in the second coil due to the variation in the magnetic field associated with the second coil. This phenomena is known as mutual induction	1	
Pag	e 14 of 16 Final draft 17/03/	15 04.00 +	n m

(b) Flux (((ϕ_1) associated with S_1 when I_2 current flows through S_2	1⁄2	
$N_1\phi_1 = $	= $M_{12}I_2$ (1) spectra field due to the current I_2 in S_2 is $\mu_n n_2 I_2$	1/2	
$\therefore N_1 \phi$	$\prod_{1}^{n} = (n_{1}l)(\pi r_{1}^{2})(\mu_{0}n_{2}I_{2})$		
Erom ($= \mu_0 n_1 n_2 \pi r_1^2 l l_2(2)$	1	
FIOIII ($M_{12} = \mu_0 n_1 n_2 \pi r_1^2 l$	-	
(c) Induce We hav	ed emf in coil C ₁ due to the change in current through C ₂ ve $N_1\phi_1 = MI_2$	1/2	
For var	ying currents, $(d\phi_1)$ (dI_2)	1⁄2	
	$N_1\left(\frac{dt}{dt}\right) = M\left(\frac{dt}{dt}\right)$	1/2	
	$-c(dl_2)$	72	
	$-\varepsilon_1 = M\left(\frac{m_2}{dt}\right)$	1/	
	(dl_2)	1/2	
or	$\varepsilon_1 = -M\left(\frac{1}{dt}\right)$		
			5
	OR		
(a) State	mont of Amporo's circuital low 1		
Deri	vation of magnetic field B 2		
(b) Mag	netic field inside the thick wire 1		
Gran	outside the wire $\frac{1}{2}$		
(a) Ampere	e's Circuital law states that the line integral of the magnetic	1	
field, or	ver a closed loop is equal to μ_0 times the total current passing		
through	The surface enclosed by the loop.		
Alterna	$tively, \oint \overrightarrow{B}. \ \overrightarrow{dl} = \mu_0 I$		
I at an infinita	straight wire carry a current I. We consider a circle of radius r		
centered on the	e wire, and having its plane perpendicular to the wire.		
	<u>↑</u> 1		
		1/2	
	,		
By right hand	rule, the magnetic field is tangential at every point of this		
circular loop.		150400	
10 15 of 16	Line drett $17/02$	(15 (1)/(1)/(1))	nm

