MARKING SCHEME SET 55/1/G

Q. No.	Expected Answer / Value Points	Marks	Total Marks
	Section A		
C-41 O1		1/	1
Set1,Q1	Capacitive	1/2	
Set2,Q5	Reason: As current leads voltage (by phase angle $\frac{n}{2}$)	1/2	1
Set3,Q2	V Townside	1/	1
Set1,Q2	X – Transmitter	1/2	
Set2,Q4	Y - Channel	1/2	1
Set3,Q5		1/	1
Set1,Q3	Focal length gets doubled.	1/2	
Set2,Q2	Power is halved.	1/2	1
Set3,Q4		1/	1
Set1,Q4	Copper wire is longer.	1/2	
Set2,Q3	Reason: $\rho_C l_C = \rho_m l_m$ (as $\rho l = constant$)	1./	
Set3,Q1	$: l_c > l_m : \rho_m > \rho_c$	1/2	
<u> </u>		1./	1
Set1,Q5	Positive	1/2	
Set2,Q1	Reason: Negative charge moves from a point at a lower potential energy to	1/2	
Set3,Q3	one at a higher potential energy.		
	Continu D		1
Sat1 O6	Section B		<u> </u>
Set1,Q6 Set2,Q7			
_	Definition of Power loss ½		
Set3,Q10	Form in which the power loss appear ½		
	Proof- (To minimise power loss in transmission cables 1		
	Voltage should be high)		
	Electrical energy lost per second in the resistor, is Power loss	1/2	
	· Power loss appears in the form of heat/ e. m. radiations.	1/2	
		72	
	Consider a device 'R', to which power P is to be delivered via transmission		
	cables having a resistance R_c , Let V be the voltage across 'R', and I be the		
	current through it, then		
	$P = V I$ $\therefore I = \frac{P}{V}$	1/2	
	, · · · · · · · · · · · · · · · · · · ·	^-	
	Power dissipated in the cable $(P_C) = I^2 R_C$		
	P^2R_c		
	$=\frac{V^2}{V^2}$		
	1	1/2	
	$= \frac{P^2 R_c}{V^2}$ $\therefore P_c \propto \frac{1}{V^2}$		
	∴ Energy transmission, at high voltage, minimizes the power loss.		2
Set1,Q7	Formula		
Set2,Q10	Formula 1		
Set3,Q8	Calculation of kinetic energy 1		

	$\lambda = \frac{h}{p} = \frac{h}{\sqrt{2m \ E_k}}$	1/2	
	$p \sqrt{2m} E_k$		
	$\therefore \ \lambda^2 = \frac{h^2}{2m \ E_k}$	1/2	
	$\frac{1}{2m} E_{k}$, 2	
	$F_{r} = \frac{(6.63 \times 10^{-34})^2}{1}$	1/2	
	$E_k = \frac{(6.63 \times 10^{-34})^2}{2 \times 9.1 \times 10^{-31} \times (589 \times 10^{-9})^2} J$		
	$=6.95 \times 10^{-25} J$	1/2	
	Alternatively $E_k = 4.35 \mu eV$		2
Set1,Q8			
Set2,Q6 Set3,Q9	Formula ½ Calculation & result 1½		
5615, 25			
	$\frac{1}{f} = \frac{1}{v} - \frac{1}{u}$ (i) $\therefore \frac{1}{f} = \frac{1}{90-u} - \frac{1}{-u} = \frac{1}{90-u} + \frac{1}{u}$ (1) (ii) $\frac{1}{f} = \frac{1}{70-u} - \frac{1}{-(u+20)} = \frac{1}{70-u} + \frac{1}{u+20}$ (2)	1/2	
	(i) $\therefore \frac{1}{f} = \frac{1}{90-u} - \frac{1}{-u} = \frac{1}{90-u} + \frac{1}{u}$ (1)		
	(ii) $\frac{1}{2} = \frac{1}{2} =$	1/2	
	f = 70-u = -(u+20) = 70-u = u+20		
	Solving eq^n (1) and (2), u=35 cm	1/2	
	Using lens formula		
	f = 21.4 cm	1/2	
	(Alternatively if a candidate calculates the focal length by using the	, 2	
	formula $4fD=D^2-d^2$, award full marks.)		2
Set1,Q9	(a) Value of Z		
Set2,Q8	(a) Value of Z Value of A		
Set3,Q7	(b) Explanation 1		
	(6) 2.15.11.11.10.1	1/4	
	(a) $Z = 56$	1/ ₂ 1/ ₂	
	A=89	/ 2	
	(b) Difference in the total mass of the nuclei on the two sides of the		
	reaction gets converted into energy or vice versa	1	
	Alternatively.		
	The number is conserved but the B.E./ nucleon can be different for		
	different nuclei.		2
Set1,Q10			
Set2,Q9	Explanation (4 steps) $\frac{1}{2} \times 4 = 2$		
Set3,Q6	Mobile telephony takes place in following ways:		
	(i) Physical area is divided into smaller cell zones.	1/2	
	(ii) Radio antenna in each cell receives and transmits radio signals, to	1/2	
	and from, mobile phones.		
	(iii) These radio antenna are connected to each other through a network. (Controlled and managed by a central control room	1/2	
	called Mobile Telephone Switching Office (MTSO)	/ 2	
	(iv) MTSO records the location and identifies the cell of the mobile	1/2	
	phone.		2

	OR		
	Basic mode of communication ½		
	Type of mode 1 Expression for d 1/2		
		1/	
	Line of sight / Broadcast Space wave	1/2	
	$d = \sqrt{2Rh_1} + \sqrt{2Rh_2}$, R is radius of earth	1/2	
	(Also accept if the student writes $d \propto \sqrt{h}$)		
	Section C		2
Set1,Q11	(a) Equivalent capacitance		
Set2,Q20 Set3,Q15	(b) Charge on each capacitor 1+1		
	(a) Equivalent capacitance $(C_n) = \frac{C}{3} + C$ $= \frac{4C}{3} = \frac{40}{3} \mu F$		
	(a) Equivalent capacitance $(C_n) = \frac{1}{3} + C$	1/2	
	$=\frac{4C}{2}=\frac{40}{2} \mu F$	1/2	
	(b) Charge on C_4 , $q_4 = C_4 \times V = 10 \times 500 \mu C$	1/2	
	$=5\times10^{-3} \text{ C}=5\text{mC}$	1/2	
	Charge on C_1, C_2, C_3 is same and is equal to $\frac{C}{3} \times V$	1/2	
	$=\frac{5}{3} \times 10^{-3} C$		
	= 1.67 mC	1/2	
G .1.012			3
Set1,Q12 Set2,Q21	Current drawn from the source 1		
Set3,Q16	P.D across C and D		
	P.D across one of the diagonals		
	Net resistance of the circuit, $R_{eq} = 3 \Omega$	1/2	
	$\therefore \text{ Current, I} = \frac{V}{R_{eq}} = \frac{9}{3} = 3 \text{ A}$	1/2	
	P.D across CD, $V_{CD} = I_{CD} \times R_{CD}$		
	$= \left(3 \times \frac{1}{4}A\right) \times 4\Omega = 3V$	1/2	
	When the wire is stretched to double its length, each resistance becomes four	1/2	
	times, i.e. 16Ω each. P.D across one of the diagonal, V_{AC} or $V_{BD} = \left(\frac{9}{12} \times \frac{1}{4}A\right) \times 32\Omega = 6 \text{ V}$	1/2	
	1.D deross one of the diagonal, \sqrt{AC} of $\sqrt{BD} = \left(\frac{1}{12} \times \frac{1}{4} \right) \times 3232 = 0$	1/2	3
Set1,Q13			J
Set2,Q22	Path of the electron 1/2 Determination of frequency of revolution 1 1/2		
Set3,Q17	Dependence of frequency on speed 1/2		
	Explanation / Reason ½		
	The force, on the electron, due to the magnetic field, at any instant is	1/2	
	perpendicular to its instanteneous velocity.		

Alternatively. Because necessary centripetal force is proacting on the electron. $v = \frac{qB}{2\pi m}$ $= \frac{1.6 \times 10^{-19} \times 6.5 \times 10^{-4}}{2 \times 3.14 \times 9.1 \times 10^{-31}} \text{ Hz}$ $= 1.8 \times 10^7 \text{ Hz}$ No As $v = \frac{qB}{2\pi m}$ i.e. v is independent of v	1/ ₂	3
the junction. (ii) Seperation of electrons and hole depletion region. (iii) Collection of electrons and hole respectively. I-V characteristics of solar cell	generate the emf in a solar cell so due to the light incident close to es due to the electric field of the 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/	

	A ', ' C.1 C.11 '		1/	1
	Any one criteria of the following:	***	1/2	
	(i) Small band gap (1.0 to 1.8	eV)		
	(ii) High optical absorption			
	(iii) Electrical conductivity			
	(iv) Availability of raw materia	l		
	(v) Cost			
		OR		3
	Fabrication of LED	1/2		
	Working	1		
	Three advantages of LEDs	1 ½		
	Three devantages of EEDs	1 /2	1/2	
	An LED is fabricated from a semiconol LEDs of different colours are made from		72	
	Working		1/2	
	When LED is forward biased, the elec	trons move from $n \rightarrow p$ and holes from	, -	
		harge carriers at the junction increases.		
		Ç Ç	1/2	
	Excess minority charge carriers combit the junction and release energy as pho-	, , , , , , , , , , , , , , , , , , ,		
	Advantages (Any three)			
	(i) Low operational voltage an	nd less power		
	(ii) Fast action and no warm-up	-	½×3	
		ight is 100Å to 500 Å or, in other	$=1 \frac{1}{2}$	
	words, it is nearly (but not	=		
	(iv) Long life and ruggedness	· ····· y ,		
	(v) Fast on-off switching capal	oility		
		•		3
Set1,Q15	Comparison and Explanation of three	ee distinguishing features. 3		
Set2,Q17 Set3,Q11				
5005,Q11	Interference	Diffraction		
	1)Equally spaced fringes	1)Fringes are not equally		
	1)Equally spaced finiges	spaced		
	2)All maxima have equal	2)Intensity of maxima keeps		
	brightness	on decreasing		
	3)Formed by superposition of	3)Formed through		
	wavefronts from two coherent	superposition of wavelets		
	sources	from a single wavefront		
	4)There is a maxima at the	4)First minima occurs at an		
	angle λ/a	angle λ/a		
	5)Quite a large number of	5) It becomes difficult to	1 ×3	
	fringes are easily observable	distinguish maxima and		
	iringes are easily observable	minima after a few fringes		
		minima arcer a rew minges		
	(Any three)			
				3

Page 5 of 14 Final draft 17/03/15 02:30p.m.

Set1,Q16			
Set1,Q10 Set2,Q18	Expression for K.E 2 Relation for P.E 1		
Set3,Q12	For an electron (mass 'm' and charge 'e') revolving in n th stable circular	1/2	
	orbit of radius T_n , with velocity v_n , in the hydrogen atom (2=1), we have $\frac{mv_n^2}{r_n} = \frac{1}{4\pi\varepsilon_o} \frac{e^2}{r_n^2}$ $\therefore E_k = \frac{1}{2} mv_n^2 = \frac{e^2}{8\pi\varepsilon_o r_n}$ $\therefore E_p = \frac{1}{4\pi\varepsilon_o} \frac{(+e) \times (-e)}{r_n}$ $= -\frac{e^2}{4\pi\varepsilon_o r_n}$	1/2	
	$\therefore E_k = \frac{1}{2} m v_n^2 = \frac{e^2}{8\pi\epsilon r}$	1	
	$\therefore E_p = \frac{1}{4-e} \frac{(+e) \times (-e)}{e}$	1/2	
	$= -\frac{e^2}{e^2}$	1/2	
	$4\pi\epsilon_{o}r_{n}$		3
Set1,Q17 Set2,Q19 Set3,Q13	Showing that AND gate followed by NOT gate is NAND gate 1 Truth table of NAND gate 1 Why is NAND gate called universal gate? 1		
	A B Output of AND gate (Input of NOT gate) Output of NOT gate) 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0	1	
	Truth table of NAND Gate A B Y 0 0 1 1 1 1 0 1 1 1 0	1	
	NAND gate is called universal gate because all other basic gates like AND, OR, NOT gate, can be realised by using NAND gates only.	1	3
Set1,Q18 Set2,Q11 Set3,Q14	Block Diagram / Explanation of AM 1 Can AM wave be transmitted as such 1 Explanation 1		
	Block Diagram		
	$ \xrightarrow{m(t)} \xrightarrow{x(t)} \xrightarrow{SQUARE} \xrightarrow{y(t)} \xrightarrow{BANDPASS} \xrightarrow{FILTER} \xrightarrow{CENTRED} \xrightarrow{AT \ \omega_c} \xrightarrow{Signal)} \xrightarrow{c \ (t)} \xrightarrow{A_c \ sin \ \omega_c t} \xrightarrow{(carrier)} \xrightarrow{BANDPASS} \xrightarrow{AM \ Wave} \xrightarrow{FILTER} \xrightarrow{CENTRED} \xrightarrow{AT \ \omega_c} \xrightarrow{AT \ \omega_c} \xrightarrow{Bx(t)+Cx(t)^2} $	1	

Page 6 of 14 Final draft 17/03/15 02:30p.m.

	Alternatively, Explanation of Amplitude Modulation No / AM wave cannot be transmitted as such	1	
	Explanation The A.M. wave has to be fed to power amplifier to provide the necessary power. It is then fed to the antenna for transmission.	1	3
Set1,Q19 Set2,Q12 Set3,Q21	(a) Formula Calculation of number of photons per second 1 (b) Identification of Metal Reason/explanation 1/2		
	(a) $P = Nh\nu$ $N = \frac{2 \times 10^{-3}}{(6.63 \times 10^{-34} \times 6.0 \times 10^{14})}$ $N = 5.0 \times 10^{15} \ photons \ per \ second$ (b) Metal X $(K.E = h\nu - \phi_o) / : \phi_v > \phi_x, \therefore (K.E)_x > (K.E)_v$	1 1/2 1/2 1/2 1/2	
			3
Set1,Q20 Set2,Q13 Set3,Q22	(a) Formula Calculation and Result (b) Formula Calculation and Result 1 Calculation and Result 1		
	(a) $\Delta\theta = \frac{1.22\lambda}{D}$ $= \frac{1.22 \times 6 \times 10^{-7}}{2.5} radian$ $\approx 2.9 \times 10^{-7} radian$	1/ ₂ 1/ ₂ 1/ ₂	
	(b) $10\frac{\lambda D}{d} = 2\frac{\lambda}{a}$ $a = \frac{d}{5D} = \frac{10^{-3}}{5 \times 1} m$	1/2	
	$5D 5 \times 1$ =2×10 ⁻⁴ m=0.2 mm	1/2	3
Set1,Q21 Set2,Q14 Set3,Q19	(a) Derivation for induced emf (b) Expression for power 2 1		3
	(a) Emf induced = $\int_0^l Bwrdr$	1/2	
	$=\frac{1}{2}Bwl^2$	1/2	
		1	
	(b) $P = \frac{\epsilon^2}{R} = \frac{(\pi B \nu l^2)^2}{R} = \frac{\pi^2 B^2 \nu^2 l^4}{R}$	1/2	
	$=\frac{n B V t}{R}$	1/2	3

		_	T
Set1,Q22	Expression for generalized Ampere's Circuital law 1		
Set2,Q15 Set3,Q20	Explanation of significance of time dependent term 1		
SC(3,Q20	Suitable Example 1		
	$\int \vec{p} d\vec{l} = u i + u d\phi_E$		
	$\int \int \int dt - \mu_0 t_c + \mu_0 \epsilon_0 \frac{dt}{dt}$		
	$ \oint \vec{B} \cdot \vec{dl} = \mu_o i_c + \mu_o \varepsilon_o \frac{d\phi_E}{dt} = \mu_o \left(i_c + \varepsilon_o \frac{d\phi_E}{dt} \right) = \mu_o (i_C + i_D) $	1	
	The time dependent term i.e. $\varepsilon_0 \frac{d\phi_E}{dt}$ represents the displacement current.	1/2	
	It exists in the region in which the electric flux (ϕ_0) i.e. the electric field (\vec{E})	1/2	
	changes with time.		
	Example- During charging or discharging of a capacitor, the current in the		
	wire connecting the capacitor plates to the source is conduction current	1/2	
	whereas in between the plates it is displacement current due to the change of		
	electric field between the plates which makes the circuit complete. The conduction current is always equal to the displacement current.	1/2	
	The conduction current is always equal to the displacement current.	/2	2
	Section D		3
Set1,Q23	Section D		
Set2,Q23	a) Principle of a dynamo		
Set3,Q23	Working of a dynamo		
	b) Two values displayed by Hari $\frac{1}{2} + \frac{1}{2}$		
	Two values displayed by Science teacher $\frac{1}{2} + \frac{1}{2}$		
	(a) Dain sin la		
	(a) Principle When magnetic flux through a coil changes, an emf is induced	1	
	across its ends.	1	
	Working:		
	When the coil (Armature) is rotated in a uniform magnetic field by		
	some external means, the magnetic flux through it changes. So an		
	emf is induced across the ends of the coil connected to an external	1	
	circuit by means of slip rings and brushes.		
	(b) Two values displayed by Hari (Any two)	1/4 + 1/4	
	Scientific temperament / curiosity / learning attitude / any other quality	$\frac{1}{2} + \frac{1}{2}$	
	Two values displayed by Science teacher (Any two)		
	Responsive / caring and concerned / encouraging / any other quality	1/2 + 1/2	
			4
9 4 9 5 4	Section E	1	Τ
Set1,Q24			
Set2,Q26 Set3,Q25	(a) Principle of working of a transformer 1		
3c13,Q23	Labelled Diagram (b) Deducing expression for the ratio of		
	(b) Deducing expression for the ratio of (i) Output voltage to input voltage 1		
	(i) Output voltage to input voltage 1 (ii) Output current to input current 1		
	(c) One main source of energy loss ½		
	How is the energy loss reduced?		

(a) Principle of working:

When the current through the primary coil changes, the magnetic flux linked with the secondary coil also changes. Hence an emf is induced across the ends of the secondary coil.

(If the student just writes, 'mutual induction', award ½ mark)

(b) (i)
$$\begin{split} \frac{V_S}{V_P} &= -N_S \frac{d\phi}{dt} / (-N_P) \frac{d\phi}{dt} \\ &= \frac{N_S}{N_P} \end{split}$$

(ii)
$$V_S I_S = V_P I_P$$

$$\therefore \frac{I_S}{I_P} = \frac{N_P}{N_S}$$

(c) Main source of energy losses (any one)

Flux leakage / Joule's loss / loss due to eddy currents / Hysteresis loss

How they are reduced (any one in the same order)

Winding the primary and secondary coils one over the other / using thick wires / having laminated core / using a magnetic materal which has a low hysterisis loss

OR

(a) Labelled diagram of a moving coil galvanometer	1
Working Principle	1/2
Function of soft iron core	1/2
(b) Definition of	
(i) Current sensitivity	1/2
(ii) Voltage sensitivity	1/2
(c) Underlying Principle used in converting a galvanometer	into
(i) Voltmeter	1
(ii) Ammeter	1

5

1

1

 $\frac{1}{2}$

1/2

1/2

1/2

1/2

1/2

	Pointer Permanent magnet Coil Soft-iron Uniform radial magnetic field	1	
	Principle: When a current carrying coil is kept in a magnetic field, it experiences a torque.	1/2	
	Cylindrical soft iron core makes the magnetic field radial.	1/2	
	(b)(i) Current sensitivity: It is defined as deflection produced per unit	1/2	
	current flowing through the galvanometer. (ii) Voltage sensitivity: It is defined as deflection produced per unit voltage applied across the galvanometer.	1/2	
	(c) (i) Conversion of galvanometer, into a voltmeter, is based on the fact that the voltmeter should have very high resistance so that very little (negligible)	1	
	current flows through it. (ii) Conversion of galvanometer, into an ammeter, is based on the fact that the ammeter should have very little (negligible) resistance so that it does not reduce the current in the circuit.	1	
	Alternatively, A galvanometer can be converted into		
	(i) a voltmeter by connecting a suitable high resistance in series with its coil. (ii) an ammeter by connecting a suitable shunt (I_{av}) resistance parallel with		
	its coil.		
	[Note: If the student just writes		
	$(i) R = \left(\frac{V}{i_g} - G\right)$		
	and (ii) $S = \left(\frac{i_g}{I - i_g}\right) G$		
	award ½ mark in each case]		5
Set1,Q25 Set2,Q24 Set3,Q26	(a) Two essential conditions for the phenomenon of total internal reflection 1+1 (b) Ray diagram 1 (c) Diagram with explanation 1 ½ Example to illustrate the use of optical fibre in transmission ½		
•		i	

Alternatively,

(Any one of the above diagram)

(b)

Let t be the time taken by the wavefront to travel the distance BC in rarer medium and AE in the denser medium

$$\therefore BC = v_1 t \text{ and } AE = v_2 t$$

$$\therefore \frac{\sin i}{\sin r} = \frac{BC}{AC} \times \frac{AC}{AE} = \frac{v_1 t}{v_2 t}$$

$$= \frac{v_1}{v_2} = \text{constant}$$
Frefractive index' of the denser medium.

This constant is called 'refractive index' of the denser medium with respect to the rarer medium. Thus, Snell's law is verified.

1/2

1

1/2

1/2

Page 12 of 14 Final draft 17/03/15 02:30p.m.

medium 2, then if BC = λ_1 , AE = λ_2	1/2	
	1/2	
$\lambda_1 \lambda_2$		
This equation implies that when a wave gets refracted into a denser medium , its wavelength and speed decrease but its frequency (v/λ) remains the same.	1/2	5
(a) Definition of Electric flux S.I unit (b) Formula for Electric flux Calculation and result for net flux Formula and result for net charge 1/2 1/2 2 1/2 + 1/2		
(a) Definition: Total number of electric field lines passing perpendicularly through a surface is called electric flux.	1	
(Also accept: $\phi = \phi_S E. ds$) S. Lunit of electric flux is Nm^2C^{-1}	1/2	
(b)From $\phi = \oint \vec{E} \cdot \overrightarrow{ds}$ Net flux through the cube (Φ) = Net flux through the two faces of the cube (Perpendicular to X-axis + perpendicular to Y-axis + Perpendicular to Z-axis)	1/2	
$\Phi = \phi_x + 0 + 0$ (As $\vec{E} \cdot \vec{ds}$ is (separately) zero for $(\vec{E} = \propto x \hat{\imath})$ for the faces perpendicular to the y and the z-axis)	1/2	
$= EdS \cos 180^o + EdS \cos 0^o$	1/2	
$= [\alpha(a)(-1) + \alpha(2a)]a^{2}$ (Alternatively: $[\propto (x)(-1) + \propto (a+x)(+1)]a^{2}$)	1/2	
$= \alpha a^3$	1/2	
Net charge inside cube (Q)= $\Phi \epsilon_0$	1/	
$= \alpha a^{\circ} \epsilon_0$	1/2 1/2	
ΩR		5
(a) Definition of equipotential surface 1 Reason (Electric field directed normal to the surface) 1 (b) Diagram 1 Reason 1 (c) Plot of V versus X 1		
	$\frac{\lambda_1}{\lambda_2} = \frac{BC}{AE} = \frac{v_1}{v_2}$ Or $\frac{v_1}{\lambda_1} = \frac{v_2}{\lambda_2}$ This equation implies that when a wave gets refracted into a denser medium, its wavelength and speed decrease but its frequency (v/λ) remains the same. (a) Definition of Electric flux S.I unit Surface is called electric flux S.I unit of electric flux S.I unit of electric flux S.I unit of electric flux is Nm^2C^{-1} S.I unit of electric flux through the two faces of the cube (Perpendicular to X-axis + perpendicular to Y-axis + Perpendicular to Z-axis) $\Phi = \phi_x + 0 + 0 \text{ (As } \vec{E} \cdot \vec{ds} \text{ is (separately) zero for } (\vec{E} = \propto x \hat{\imath} \text{) for the faces perpendicular to the y and the z-axis})$ $= EdS \cos 180^o + EdS \cos 0^o$ $= [a(a)(-1) + a(2a)]a^2$ (Alternatively: $[\propto (x)(-1) + \propto (a + x)(+1)]a^2$) $= \alpha a^3$ Net charge inside cube $(Q) = \Phi \epsilon_0$ $= \alpha a^3 \epsilon_0$ OR (a) Definition of equipotential surface Reason (Electric field directed normal to the surface) I have a constant of the surface of the sur	medium 2, then if $\overrightarrow{BC} = \lambda_1$, $\overrightarrow{AE} = \lambda_2$ $\frac{\lambda_1}{\lambda_2} = \frac{BC}{BE} = \frac{v_1}{v_2}$ Or $\frac{v_1}{\lambda_1} = \frac{v_2}{k_2}$ This equation implies that when a wave gets refracted into a denser medium, its wavelength and speed decrease but its frequency (v/λ) remains the same. (a) Definition of Electric flux $S.I \text{ unit} \qquad \qquad \frac{v_2}{k_2}$ (b) Formula for Electric flux $S.I \text{ unit} \qquad \qquad \frac{v_2}{k_2}$ (a) Definition: Total number of electric field lines passing perpendicularly through a surface is called electric flux. (Also accept: $\Phi = \oint_S \vec{E} \cdot \vec{dS} > g$ S.I unit of electric flux is Nm^2C^{-1} (b) From $\Phi = \oint_S \vec{E} \cdot \vec{dS} > g$ Net flux through the cube (Φ) = Net flux through the two faces of the cube (Perpendicular to X-axis) + Perpendicular to E axis is (separately) zero for E axis if for the faces perpendicular to the y and the z-axis) $EEdS \cos 180^o + EdS \cos 0^o = EdS \cos 180^o + EdS \cos 0^o = E(a(a)(-1) + a(2a)]a^2$ (Alternatively: E axis is (separately) zero for E axis is E axis in the cube E axis is E and E axis is E and E are E and E are E and E and E and E are E and E and E are E and E are E and E are E and E and E are E and

(a) A surface having same potential at all points on it, is called an 1 equipotential surface. If the electric field were not normal to the equipotential surface, 1 it will have a non-zero component along the surface. Hence, will be done in moving a unit test charge from one point to another point on the surface against this component of the field, which is not true. **Alternatively:** $\overline{\text{Component of } \vec{E} \text{ along the equipotential surface}}$ = - (rate of change of potential along the equipotential surface) = zero Hence \vec{E} has to be normal to the equipotential surface at all points. (b) 1 1 Reason: Electric field decreases as the distance from the charges increases. Also, electric field component, in any direction, equals the negative of rate of change of potential in that direction. 1

5