MARKING SCHEME
SET 55/1/G

Q. No.	Expected Answer / Value Points	Marks	Total Marks
Section A			
$\begin{aligned} & \hline \text { Set1,Q1 } \\ & \text { Set2,Q5 } \\ & \text { Set3,Q2 } \end{aligned}$	Capacitive Reason: As current leads voltage (by phase angle $\frac{\pi}{2}$)	$\begin{array}{\|l\|} \hline 1 / 2 \\ 1 / 2 \\ \hline \end{array}$	1
$\begin{aligned} & \hline \text { Set1,Q2 } \\ & \text { Set2,Q4 } \\ & \text { Set3,Q5 } \\ & \hline \end{aligned}$	X - Transmitter Y - Channel	$\begin{array}{\|l\|} \hline 1 / 2 \\ 1 / 2 \end{array}$	1
$\begin{aligned} & \hline \text { Set1,Q3 } \\ & \text { Set2,Q2 } \\ & \text { Set3,Q4 } \\ & \hline \end{aligned}$	Focal length gets doubled. Power is halved.	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
$\begin{aligned} & \text { Set1,Q4 } \\ & \text { Set2,Q3 } \\ & \text { Set3,Q1 } \end{aligned}$	$\begin{aligned} & \text { Copper wire is longer. } \\ & \text { Reason: } \rho_{c} l_{c}=\rho_{m} l_{m} \quad(\text { as } \rho l=\text { constant }) \\ & \therefore l_{c}>l_{m} \because \rho_{m}>\rho_{c} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
$\begin{aligned} & \hline \text { Set1,Q5 } \\ & \text { Set2,Q1 } \\ & \text { Set3,Q3 } \end{aligned}$	Positive Reason: Negative charge moves from a point at a lower potential energy to one at a higher potential energy.	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & \hline \end{aligned}$	1
Section B			
$\begin{aligned} & \hline \text { Set1,Q6 } \\ & \text { Set2,Q7 } \\ & \text { Set3,Q10 } \end{aligned}$	Definition of Power loss $1 / 2$ Form in which the power loss appear $1 / 2$ Proof- (To minimise power loss in transmission cables 1 Voltage should be high) Electrical energy lost per second in the resistor, is Power loss \because Power loss appears in the form of heat/ e. m. radiations. Consider a device ' R ', to which power P is to be delivered via transmission cables having a resistance R_{C}, Let V be the voltage across ' R ', and I be the current through it, then $P=V I \quad \therefore I=\frac{P}{V}$ Power dissipated in the cable $\left(P_{C}\right)=I^{2} R_{C}$ $\begin{gathered} =\frac{P^{2} R_{c}}{V^{2}} \\ \therefore P_{c} \propto \frac{1}{V^{2}} \end{gathered}$ \therefore Energy transmission, at high voltage, minimizes the power loss.	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$ $1 / 2$ $1 / 2$	2
$\begin{aligned} & \hline \text { Set1,Q7 } \\ & \text { Set2,Q10 } \\ & \text { Set3,Q8 } \end{aligned}$	Formula 1 Calculation of kinetic energy 1		

	$\begin{gathered} \lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m E_{k}}} \\ \therefore \lambda^{2}=\frac{h^{2}}{2 m E_{k}} \\ E_{k}=\frac{\left(6.63 \times 10^{-34}\right)^{2}}{2 \times 9.1 \times 10^{-31} \times\left(589 \times 10^{-9}\right)^{2}} \mathrm{~J} \\ =6.95 \times 10^{-25} \mathrm{~J} \end{gathered}$ Alternatively,$E_{k}=4.35 \mu \mathrm{eV}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2
Set1,Q8 Set2,Q6 Set3,Q9	Formula $1 / 2$ Calculation \& result $1^{11 / 2}$$\begin{equation*} \frac{1}{f}=\frac{1}{v}-\frac{1}{u} \tag{1} \end{equation*}$ (i) $\quad \therefore \frac{1}{f}=\frac{1}{90-u}-\frac{1}{-u}=\frac{1}{90-u}+\frac{1}{u}$ (ii) $\frac{1}{f}=\frac{1}{70-u}-\frac{1}{-(u+20)}=\frac{1}{70-u}+\frac{1}{u+20}$ Solving $e q^{n}$ (1) and (2), $u=35 \mathrm{~cm}$ Using lens formula $\mathrm{f}=21.4 \mathrm{~cm}$ (Alternatively if a candidate calculates the focal length by using the formula $4 f D=D^{2}-d^{2}$, award full marks.)	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2
Set1,Q9 Set2,Q8 Set3,Q7	(a) Value of Z $1 / 2$ Value of A $1 / 2$ (b) Explanation 1 (a) $\begin{aligned} & Z=56 \\ & A=89 \end{aligned}$ (b) Difference in the total mass of the nuclei on the two sides of the reaction gets converted into energy or vice versa Alternatively. The number is conserved but the B.E./ nucleon can be different for different nuclei.	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$ 1	2
Set1,Q10 Set2,Q9 Set3,Q6	Explanation (4 steps) Mobile telephony takes place in following ways: (i) Physical area is divided into smaller cell zones. (ii) Radio antenna in each cell receives and transmits radio signals, to and from, mobile phones. (iii) These radio antenna are connected to each other through a network. (Controlled and managed by a central control room called Mobile Telephone Switching Office (MTSO)) (iv) MTSO records the location and identifies the cell of the mobile phone.	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2

\begin{tabular}{|c|c|c|c|}
\hline \& OR \& \& \\
\hline \& \begin{tabular}{l}
Basic mode of communication \\
Type of mode \\
Expression for d \\
Line of sight / Broadcast \\
Space wave \\
\(d=\sqrt{2 R h_{1}}+\sqrt{2 R h_{2}}, \mathrm{R}\) is radius of earth \\
(Also accept if the student writes \(d \propto \sqrt{h}\))
\end{tabular} \& \(1 / 2\)
1
\(1 / 2\) \& 2 \\
\hline \& Section C \& \& \\
\hline \[
\begin{aligned}
\& \hline \text { Set1,Q11 } \\
\& \text { Set2,Q20 } \\
\& \text { Set3,Q15 }
\end{aligned}
\] \& \begin{tabular}{l}
(a) Equivalent capacitance \\
(b) Charge on each capacitor \\
(a) Equivalent capacitance
\[
\begin{aligned}
\left(\mathrm{C}_{\mathrm{n}}\right) \& =\frac{C}{3}+\mathrm{C} \\
\& =\frac{4 C}{3}=\frac{40}{3} \mu F
\end{aligned}
\] \\
(b) Charge on \(\mathrm{C}_{4}, \mathrm{q}_{4}=\mathrm{C}_{4} \times \mathrm{V}=10 \times 500 \mu \mathrm{C}\)
\[
=5 \times 10^{-3} \mathrm{C}=5 \mathrm{mC}
\] \\
Charge on \(\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}\) is same and is equal to \(\frac{C}{3} \times \mathrm{V}\)
\[
\begin{gathered}
=\frac{5}{3} \times 10^{-3} \mathrm{C} \\
=1.67 \mathrm{mC}
\end{gathered}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 3 \\
\hline \[
\begin{aligned}
\& \hline \text { Set1,Q12 } \\
\& \text { Set2,Q21 } \\
\& \text { Set3,Q16 }
\end{aligned}
\] \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Current drawn from the source \& 1 \\
P.D across C and D \& 1 \\
P.D across one of the diagonals \& 1 \\
\hline
\end{tabular} \\
Net resistance of the circuit, \(\mathrm{R}_{\text {eq }}=3 \Omega\) \\
\(\therefore\) Current, \(\mathrm{I}=\frac{V}{R_{e q}}=\frac{9}{3}=3 \mathrm{~A}\) \\
P.D across CD, \(\mathrm{V}_{\mathrm{CD}}=\mathrm{I}_{\mathrm{CD}} \times \mathrm{R}_{\mathrm{CD}}\)
\[
=\left(3 \times \frac{1}{4} A\right) \times 4 \Omega=3 V
\] \\
When the wire is stretched to double its length, each resistance becomes four times, i.e. \(16 \Omega\) each. \\
P.D across one of the diagonal, \(\mathrm{V}_{\mathrm{AC}}\) or \(\mathrm{V}_{\mathrm{BD}}=\left(\frac{9}{12} \times \frac{1}{4} A\right) \times 32 \Omega=6 \mathrm{~V}\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3 \\

\hline \[
$$
\begin{aligned}
& \hline \text { Set1,Q13 } \\
& \text { Set2,Q22 } \\
& \text { Set3,Q17 }
\end{aligned}
$$

\] \& | Path of the electron $1 / 2$
 Determination of frequency of revolution $11 / 2$
 Dependence of frequency on speed $1 / 2$
 Explanation / Reason $1 / 2$ |
| :--- |
| The force, on the electron, due to the magnetic field, at any instant is perpendicular to its instanteneous velocity. | \& 1/2 \& \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Alternatively, \\
Because necessary centripetal force is provided by Lorentz magnetic force acting on the electron.
\[
\begin{aligned}
\& v=\frac{q B}{2 \pi m} \\
\& =\frac{1.6 \times 10^{-19} \times 6.5 \times 10^{-4}}{2 \times 3.14 \times 9.1 \times 10^{-31}} \mathrm{~Hz} \\
\& =1.8 \times 10^{7} \mathrm{~Hz}
\end{aligned}
\] \\
No \\
As \(v=\frac{q B}{2 \pi m}\) i.e. \(v\) is independent of \(v\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$ \& 3 \\

\hline \[
$$
\begin{aligned}
& \text { Set1,Q14 } \\
& \text { Set2,Q16 } \\
& \text { Set3,Q18 }
\end{aligned}
$$

\] \& | Circuit Diagram |
| :--- |
| Three basic processes |
| Three basic processes which take place to generate the emf in a solar cell are: |
| (i) Generation of electron hole pairs due to the light incident close to the junction. |
| (ii) Seperation of electrons and holes due to the electric field of the depletion region. |
| (iii) Collection of electrons and holes by n -side and p -side respectively. |
| I-V characteristics of solar cell | \& 1/2 \& \\

\hline
\end{tabular}

	Any one criteria of the following: (i) Small band gap (1.0 to 1.8 eV) (ii) High optical absorption (iii) Electrical conductivity (iv) Availability of raw material (v) Cost OR An LED is fabricated from a semiconductor having a band gap $\geq 1.8 \mathrm{eV} /$ LEDs of different colours are made from compound semiconductors. Working When LED is forward biased, the electrons move from $\mathrm{n} \rightarrow \mathrm{p}$ and holes from $\mathrm{p} \rightarrow \mathrm{n}$; thus concentration of minority charge carriers at the junction increases. Excess minority charge carriers combine with majority charge carriers near the junction and release energy as photons. Advantages (Any three) (i) Low operational voltage and less power (ii) Fast action and no warm-up time required. (iii) The bandwidth of emitted light is $100 \AA ీ$ to $500 \AA \AA$ or, in other words, it is nearly (but not exactly) monochromatic (iv) Long life and ruggedness (v) Fast on-off switching capability	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $\begin{aligned} & 1 / 2 \times 3 \\ & =11 / 2 \end{aligned}$	3 3
$\begin{array}{\|l} \hline \text { Set1,Q15 } \\ \text { Set2,Q17 } \\ \text { Set3,Q11 } \end{array}$	Comparison and Explanation of three distinguishing features. (Any three)	1×3	3

Set1,Q16 Set2,Q18 Set3,Q12	Expression for K.E 2 Relation for P.E 1 For an electron (mass ' m ' and charge ' e ') revolving in nth stable circular orbit of radius ' r_{n} ', with velocity v_{n}, in the hydrogen atom ($\mathrm{z}=1$), we have $\begin{gathered} \frac{m v_{n}^{2}}{r_{n}}=\frac{1}{4 \pi \varepsilon_{o}} \frac{e^{2}}{r_{n}^{2}} \\ \therefore E_{k}=\frac{1}{2} m v_{n}^{2}=\frac{e^{2}}{8 \pi \epsilon_{o} r_{n}} \\ \therefore E_{p}=\frac{1}{4 \pi \epsilon_{o}} \frac{(+e) \times(-e)}{r_{n}} \\ \quad=-\frac{e^{2}}{4 \pi \epsilon_{o} r_{n}} \end{gathered}$	$1 / 2$ $1 / 2$ 1 $1 / 2$ $1 / 2$	3
Set1,Q17 Set2,Q19 Set3,Q13	Showing that AND gate followed by NOT gate is NAND gate 1 Truth table of NAND gate 1 Why is NAND gate called universal gate? 1A B Output of AND gate (Input of NOT gate) Output of NOT gate 0 0 0 1 0 1 0 1 1 0 0 1 1 1 1 0Truth table of NAND Gate A B Y 0 0 1 0 1 1 1 0 1 1 1 0 NAND gate is called universal gate because all other basic gates like AND, OR, NOT gate, can be realised by using NAND gates only.	1	3
	Block Diagram / Explanation of AM 1 Can AM wave be transmitted as such 1 Explanation 1 Block Diagram	1	

	Alternatively, Explanation of Amplitude Modulation No / AM wave cannot be transmitted as such Explanation The A.M. wave has to be fed to power amplifier to provide the necessary power. It is then fed to the antenna for transmission.	1 1	3
$\begin{array}{\|l} \hline \text { Set1,Q19 } \\ \text { Set2,Q12 } \\ \text { Set3,Q21 } \end{array}$	(a) Formula 1 Calculation of number of photons per second 1 (b) Identification of Metal $1 / 2$ Reason/explanation $1 / 2$ (a) $\begin{aligned} & P=N h v \\ & N=\frac{2 \times 10^{-3}}{\left(6.63 \times 10^{-34} \times 6.0 \times 10^{14}\right)} \\ & N=5.0 \times 10^{15} \text { photons per second } \end{aligned}$ (b) Metal X $\left(K \cdot E=h v-\phi_{o}\right) / \because \phi_{y}>\phi_{x}, \therefore(K \cdot E)_{x}>(K \cdot E)_{y}$	1 $1 / 2$ $1 / 2$ $1 / 2$	3
$\begin{aligned} & \text { Set1,Q20 } \\ & \text { Set2,Q13 } \\ & \text { Set3,Q22 } \end{aligned}$	(a) Formula (b) Formula Calculation and Result (a) $\begin{aligned} & \Delta \theta=\frac{1.22 \lambda}{D} \\ &=\frac{1.22 \times 6 \times 10^{-7}}{2.5} \text { radian } \\ & \simeq 2.9 \times 10^{-7} \text { radian } \end{aligned}$ (b) $\begin{aligned} & 10 \frac{\lambda D}{d}=2 \frac{\lambda}{a} \\ & a=\frac{d}{5 D}=\frac{10^{-3}}{5 \times 1} \mathrm{~m} \\ & =2 \times 10^{-4} \mathrm{~m}=0.2 \mathrm{~mm} \end{aligned}$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
$\begin{aligned} & \hline \text { Set1,Q21 } \\ & \text { Set2,Q14 } \\ & \text { Set3,Q19 } \end{aligned}$	(a) Derivation for induced emf (b) Expression for power (a) $\begin{aligned} \text { Emf induced }= & \int_{0}^{l} B w r d r \\ & =\frac{1}{2} B w l^{2} \\ & \because \omega=2 \pi v \\ & \therefore \varepsilon=\pi B v l^{2} \end{aligned}$ (b) $P=\frac{\epsilon^{2}}{R}=\frac{\left(\pi B v l^{2}\right)^{2}}{R}$ $=\frac{\pi^{2} B^{2} v^{2} l^{4}}{R}$	$1 / 2$ $1 / 2$ 1 $1 / 2$ $1 / 2$	3

$\begin{aligned} & \hline \text { Set1,Q22 } \\ & \text { Set2,Q15 } \\ & \text { Set3,Q20 } \end{aligned}$	Expression for generalized Ampere's Circuital law 1 Explanation of significance of time dependent term 1 Suitable Example 1$\begin{aligned} \oint \vec{B} \cdot \overrightarrow{d l} & =\mu_{o} i_{c}+\mu_{o} \varepsilon_{o} \frac{d \phi_{E}}{d t} \\ & =\mu_{o}\left(i_{c}+\varepsilon_{o} \frac{d \phi_{E}}{d t}\right)=\mu_{o}\left(i_{C}+i_{D}\right) \end{aligned}$ The time dependent term i.e. $\varepsilon_{o} \frac{d \phi_{E}}{d t}$ represents the displacement current. It exists in the region in which the electric flux $\left(\varphi_{o}\right)$ i.e. the electric field (\vec{E}) changes with time. Example- During charging or discharging of a capacitor, the current in the wire connecting the capacitor plates to the source is conduction current whereas in between the plates it is displacement current due to the change of electric field between the plates which makes the circuit complete. The conduction current is always equal to the displacement current.	1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
Section D			
$\begin{array}{\|l\|} \hline \text { Set1,Q23 } \\ \text { Set2,Q23 } \\ \text { Set3,Q23 } \end{array}$	a) (a) Principle When magnetic flux through a coil changes, an emf is induced across its ends. Working : When the coil (Armature) is rotated in a uniform magnetic field by some external means, the magnetic flux through it changes. So an emf is induced across the ends of the coil connected to an external circuit by means of slip rings and brushes. (b) Two values displayed by Hari (Any two) Scientific temperament / curiosity / learning attitude / any other quality Two values displayed by Science teacher (Any two) Responsive / caring and concerned / encouraging / any other quality	1 1 $\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$	4
Section E			
$\begin{aligned} & \text { Set1,Q24 } \\ & \text { Set2,Q26 } \\ & \text { Set3,Q25 } \end{aligned}$	(a) Principle of working of a transformer 1 Labelled Diagram 1 (b) Deducing expression for the ratio of (i) Output voltage to input voltage 1 (ii) Output current to input current 1 (c) One main source of energy loss $1 / 2$ How is the energy loss reduced? $1 / 2$		

(a) Principle of working :

When the current through the primary coil changes, the magnetic flux linked with the secondary coil also changes. Hence an emf is induced across the ends of the secondary coil.
(If the student just writes, 'mutual induction', award $1 / 2$ mark)

(b)
(i) $\frac{V_{S}}{V_{P}}=-N_{S} \frac{d \varphi}{d t} /\left(-N_{P}\right) \frac{d \varphi}{d t}$

$$
=\frac{N_{S}}{N_{P}}
$$

(ii) $V_{S} I_{S}=V_{P} I_{P}$
$\therefore \frac{\mathrm{I}_{\mathrm{S}}}{\mathrm{I}_{\mathrm{P}}}=\frac{\mathrm{N}_{\mathrm{P}}}{\mathrm{N}_{\mathrm{S}}}$
(c) Main source of energy losses (any one)

Flux leakage / Joule's loss / loss due to eddy currents / Hysteresis loss
How they are reduced (any one in the same order)
Winding the primary and secondary coils one over the other / using thick wires / having laminated core / using a magnetic materal which has a low hysterisis loss

OR

(a) Labelled diagram of a moving coil galvanometer Working Principle
Function of soft iron core
(b) Definition of
(i) Current sensitivity
(ii) Voltage sensitivity
(c) Underlying Principle used in converting a galvanometer into
(i) Voltmeter
(ii) Ammeter

	(a) Essential conditions (1) The ray should pass from an optically denser medium into an optically rarer medium. (2) Angle of incidence should be greater than the critical angle for the given pair of media. (b) Ray Diagram (c) When ray of light enters into an optical fibre through one of its ends, it undergoes repeated total internal reflections along the length of the optical fibre as the angle of incidence at every point inside optical fibre is greater than the critical angle. Example : Optical fibres are used for transmitting and receiving optical signals to facilitate visual examination of internal organs of human body / for long distance communication through optical fibre cables. (any one) OR (a) Diagram demonstrating the location and shape of a wavefront using Huygen's principle (b) Diagram in frequency		5

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Reason : If \(\lambda_{1}\) and \(\lambda_{2}\) denote the wavelengths of light in medium 1 and medium 2 , then if \(\mathrm{BC}=\lambda_{1}, \mathrm{AE}=\lambda_{2}\)
\[
\begin{gathered}
\frac{\lambda_{1}}{\lambda_{2}}=\frac{B C}{A E}=\frac{v_{1}}{v_{2}} \\
\frac{v_{1}}{\lambda_{1}}=\frac{v_{2}}{\lambda_{2}}
\end{gathered}
\] \\
This equation implies that when a wave gets refracted into a denser medium , its wavelength and speed decrease but its frequency \((\mathrm{v} / \lambda)\) remains the same.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$ \& 5

\hline \[
$$
\begin{aligned}
& \text { Set1,Q26 } \\
& \text { Set2,Q25 } \\
& \text { Set3,Q24 }
\end{aligned}
$$

\] \& | (a) Definition of Electric flux 1
 S.I unit $1 / 2$
 (b) Formula for Electric flux $1 / 2$
 Calculation and result for net flux 2
 Formula and result for net charge $1 / 2+1 / 2$ |
| :--- |
| (a) Definition : |
| Total number of electric field lines passing perpendicularly through a surface is called electric flux. |
| (Also accept: $\phi=\oint_{S} \vec{E} \cdot \overrightarrow{d s}$) |
| S.I unit of electric flux is $\mathrm{Nm}^{2} \mathrm{C}^{-1}$ |
| (b)From $\phi=\oint \vec{E} \cdot \overrightarrow{d s}$ |
| Net flux through the cube (Φ) = Net flux through the two faces of the cube (Perpendicular to X -axis + perpendicular to Y -axis + Perpendicular to Z-axis) |
| $\Phi=\phi_{\mathrm{x}}+0+0$ (As $\vec{E} \cdot \overrightarrow{d s}$ is (separately) zero for $(\vec{E}=\propto x \hat{\imath})$ for the faces perpendicular to the y and the z -axis) $\begin{aligned} & =E d S \cos 180^{\circ}+E d S \cos 0^{\circ} \\ & =[\alpha(a)(-1)+\alpha(2 a)] a^{2} \\ & \left.\underline{\text { (Alternatively: }}[\alpha(x)(-1)+\alpha(a+x)(+1)] a^{2}\right) \\ & =\alpha a^{3} \end{aligned}$ |
| Net charge inside cube $(\mathrm{Q})=\Phi \epsilon_{0}$ $=\alpha a^{3} \epsilon_{0}$ |
| OR |
| (a) Definition of equipotential surface |
| Reason (Electric field directed normal to the surface) |
| (b) Diagram |
| Reason |
| (c) Plot of V versus X | \& 1

$11 / 2$

$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 5

\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \begin{tabular}{l}
(a) A surface having same potential at all points on it , is called an equipotential surface. \\
If the electric field were not normal to the equipotential surface , it will have a non-zero component along the surface. Hence, work \\
will be done in moving a unit test charge from one point to another point on the surface against this component of the field, which is not true. \\
Alternatively: \\
Component of \(\vec{E}\) along the equipotential surface \(=-\) (rate of change of potential along the equipotential surface) = zero \\
Hence \(\vec{E}\) has to be normal to the equipotential surface at all points. \\
(b) \\
Reason : \\
Electric field decreases as the distance from the charges increases. Also, electric field component, in any direction, equals the negative of rate of change of potential in that direction. \\
(c)
\end{tabular} \& 1
1
1

1
1
1
1
1 \& 5

\hline
\end{tabular}

