MARKING SCHEME SET 55/1/C

Q. No.	Expected Answer	: / Value Points	Mar	Total
			ks	Marks
	Sectio	on - A		
Set-1, Q1	Power factor = 1		1	1
Set-2, Q5				
Set-3, Q2				
Set-1, Q2	i) Width of depletion layer will decrease		1	1
Set-2, Q4	ii) potential barrier will decrease			
Set-3, Q5	(Any one point)			
Set-1, Q3	bb		1	1
Set-2, Q2	$P^{r} = \in_{0} X_{e}E^{r}$			
Sel-5, Q4	(Also accept if the student writes $P \propto E$	or $P = X_e E$)		
Set-1, Q4	Mobility is defined as drift velocity per un v_d	nit electric field	1⁄2	1
Set-2, Q_3 Set-3, Q_1	or $\mu = \frac{-\mu}{E}$		1/2	
500 5, Q1	S.I. Unit - m^2/Vs or Cm/Ns		/2	
Set-1, Q5	$\frac{1}{2} - (u - 1)(\frac{1}{2} - \frac{1}{2})$		1⁄2	1
Set-2, Q1	$\int f^{-(\mu - 1)} (R_1 - R_2)$			
Set-3, Q3			1/2	
	(Award 1 mark even if direct answer is w	ritten)	, -	
0 + 1 0 (Sectio	on - B	1	
Set-1, Q6 Set-2, Q7	Two differences between Interference an	nd Diffraction pattern 2		
Set-3, Q10		- 100		
	Interference	Diffraction		
	1 All the bright bands are of same	Intensity of bright bands goes on		
	intensity.	decreasing with increasing order.		
	2 All the bright bands are of same	Not of same width.		
	width.			
	3 Dark bands may be completely dark.	Not completely dark.		
	4 Number of fringes are more.	Less in number.	1~2	2
	(Any two) [Award only 1 mark if student draws	intensity distribution curves for both	1/2	2
	without writing points]	intensity distribution curves for both		
	Or			
C	handigarh SET I Page 1 of 18	Final Draft 17/3/2013 4:5	0 nm	1

	Diff Diff	erence in Construction - erence in Working – 1	l		
	Construction	MicroscopeObjective is of very short focal length and short aperture and eye piece of short focal length and large aperture. $[f_e > f_o]$	Telescope Objective is of large focal length and large aperture but eye piece of short focal length and short aperture.	$\frac{1/2+}{1/2}$ $\frac{1/2+}{1/2}$	
	Working	It will form magnified image of a small nearby object. (Object is placed close to focus of objective which forms real and magnified image.)	It will form magnified image of distant object. (Objective will form the image of distant object at its focus and image is diminished.)		2
Set-1, Q7 Set-2, Q10 Set-3, Q8	Post Forr Subs	ulate - 1 nula for H'_{α} line – $\frac{1}{2}$ stitution and calculation- $\frac{1}{2}$	2		
	Postulate- Energy is radia to lower orbit and it equal $hv = E_i - E_i$	ted when an electron jump to the difference in energ f	os from a (permitted) higher gy in the two orbits.	1	
	$\frac{1}{\lambda_{\infty}} = R_H [\frac{1}{2^2} - \frac{1}{3^2}]$			1⁄2	
	$= 1.03 \times 10^7 \times$ [Award ¹ / ₂ mark if studen	$\frac{5}{36} \because \lambda_{\alpha} = 6.99 \times 1$ it only writes $\frac{1}{\lambda} = R_{H} [\frac{1}{n_{f}}]$	$0^{-7} m = 699 nm$ $\frac{1}{2} - \frac{1}{n_i 2}$]	1⁄2	2

Set-1. 08			
Set 1, Q0 Set-2, O6	Kirchhoff's laws $\frac{1}{2}+\frac{1}{2}$		
Set-3, Q9	To justify them $\frac{1}{2}+\frac{1}{2}$		
	Kirchhoff's I Law: (JUNCTION LAW)		
	Sum of the incoming currents at a junction = Sum of outgoing currents		
	[Alternatively	1⁄2	
	Algebraic sum of all the currents meeting at a junction in the electrical circuit is		
	zero]		
	2 Law: (LOOP LAW) The electronic sum of the changes in notantial around any closed loop involving	14	
	resisters and calls in the loop is zero	72	
	resistors and certs in the toop is zero		
	[A]ternatively		
	In any closed electrical part of circuit sum of the e m f s is equal to sum of		
	products of various currents and resistances through which currents pass.]		
	To justify		
	First law is based on the law of conservation of charge.	1⁄2	
	Second Law is based on the law of conservation of energy.	1⁄2	2
<u> </u>			
Set-1, Q9			
Set-2, Q8	Formula for de Broglie wavelength – 1		
Set-3, Q7	Calculation and result – 1		
	$\mathbf{F}_{\mathbf{a}}$	1	
	Formula used $\lambda = \frac{1}{mv} = \frac{1}{\sqrt{2mE}}$	1	
	$\frac{\lambda_1}{E_2} = \frac{E_2}{E_2}$		
	$\lambda_2 \qquad \sqrt{E_1}$		
	since $E_n \propto \frac{1}{n^2}$	1⁄2	
	For $n = 2$ $E_2 = \frac{E_1}{E_2}$		
	$\overline{1}$	1/2	2
	$\therefore \frac{\lambda_1}{\lambda_2} = \sqrt{\frac{1}{4}} = \frac{1}{2}$		
	n_2 VI 2		
	[Award 1/2 mark if the student only writes $\lambda = \frac{h}{2}$]		
	[Award 72 mark in the student only writes $\lambda = \frac{1}{mv}$]		
Sot 1 010	Also accept any other correct alternative answer.		
Set $2,00$	(a) Difference between Analog and Digital signal 1		
Set-3 06	(b) Any two uses of internet 1		
		1	1

	(a)			
	Analog signal	Digital Signal		
	(Any one of the two)	(Any one of the two)		
	It is single valued function of time	These signals take only discrete set	1	
	or varies continuously with time	of values i.e. 0 or 1		
	alternatively	alternatively		
	Amplitude			
	(b) Uses of Internet : Any two(E mail, E- banking, chatting, file transf	fer, e-shopping, e-ticketing, surfing etc)	1/2 + 1/2	2
	Secti	ion - C	<u> </u>	•
Set-1, Q11 Set-2, Q20 Set-3, Q15	Formula Graph Information from the Selecting the materia Explanation for large	$\frac{\frac{1}{2}}{1}$ e graph uls 1 e current $\frac{1}{2}$		
	j =	σE	1⁄2	
	j↑ A	B	1	
	Slope of the graph= conductivity (σ) Material with less slope (smaller conduc resistances and material with greater slop connecting wires	ctivity) is used for making standard pe (higher conductivity) for making	1⁄2 1⁄2	
	We have $I = nAev_d$			
	Although v_d is small but n (electron num current can be large.	nber density) is very large. Hence the	1⁄2	3
Set-1, Q12 Set-2, Q21 Set-3, Q16	Statement Derivation of magnetic f Magnetic field at centre	¹ /2 mark ield on axis 2 marks ¹ /2 mark		

	Diet Severt's leve		
	$\overrightarrow{dB} \propto I \frac{\overrightarrow{dl} \times \overrightarrow{r}}{r^3}$	1⁄2	
	Or $\overrightarrow{dB} = \frac{\mu_o}{4\pi} I \frac{\overrightarrow{dl} \times \hat{r}}{r^2}$		
	[Also accept if the student writes $dB \propto I$, $dB \propto dl$ and $dB \propto \frac{1}{r^2}$]	1/2	
	Derivation The resultant magnetic field will be along the axis as the perpendicular (to the axis) components cancel out in pairs. $\mathbf{B} = \int_{0}^{e\pi R} dB \cos \theta$	1/2	
	$= \int_{0}^{2\pi R} \frac{\mu_{0}}{4\pi} \frac{Iat}{(R^{2} + x^{2})} \frac{R}{(R^{2} + x^{2})^{1/2}}$ $= \frac{\mu_{0}I}{4\pi} \frac{2\pi R^{2}}{(R^{2} + x^{2})^{3/2}} = \frac{\mu_{0}IR^{2}}{2(R^{2} + x^{2})^{3/2}}$	1/2	
	At centre, $x=0$ $\therefore B_0 = \frac{\mu_0 I}{2R}$	1⁄2	
		1⁄2	3
Set-1, Q13 Set-2, Q22 Set-3, Q17	Polaroid1Transverse nature of light1Required Explanation1Polaroid consists of long chain molecules aligned in a particular directionTransverse nature of light.	1	

Chandigarh SET I Page 5 of 18

	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1/2	
	Anerhalively		
	Explanation: Unpolarised light incident on a polaroid, gets linearly polarized with electric vector oscillating along the pass axis of Polaroid. It will pass out with same intensity from P_2 , if pass axis of P_2 is parallel to that of P_1 . On rotating P_2 intensity of light reduces to zero when their pass axes are perpendicular to each other showing transverse nature of light.	1/2 1/2	
	Explanation for intensity of light Unpolarised light incident on a Polaroid, gets polarized and its intensity is reduced to half and it does not depend on the orientation of the Polaroid.	1⁄2	3
Set-1, Q14 Set-2, Q16 Set-3, Q18	Fabrication of Zener Diode1/2Cause of high Electric field1/2Diagram for Zener Diode as Voltage Regulator1Working1		
	Zener diode is fabricated by heavy doping of its p and n sections. Since doping is high, depletion layer becomes very thin. Hence, electric field $(=\frac{V}{d})$ becomes high even for a small reverse bias.	1/2 1/2	
	R_{s} Unregulated voltage (V ₁) I_{L} Regulated R_{L} (V ₂)	1	
	$\label{eq:working:} Working: \\ If input voltage increases/ decreases, current through Zener diode will also increase/ decreases. It increases/ decreases voltage drop across R_s without any change in voltage across R_L as potential across Zener diode does not change in$	1	3

Chandigarh SET I Page 6 of 18

	breakdown region giving the regulated output voltage.		
	OR		
	(a) Diagram1/2Formation of depletion region1Potential barrier1/2b) Effect on barrier potential1		
	a) Electron drift $\xrightarrow{\leftarrow}$ Electron diffusion p $\bigcirc \ominus \ominus \ominus \\ \ominus \ominus \ominus \ominus \\ \ominus \\ \ominus \ominus \\ \ominus \\ \ominus \ominus \\ = \\ \ominus \\ \ominus$	1⁄2	
	Explanation Due to concentration gradient across p and p sides holes from p diffuse into p		
	section and leave behind ionized acceptor (negatively) ions which are immobile. As holes continue to diffuse from p to n, a layer of negative charge on p side of junction is formed. Similarly, the diffusion of electrons from n to p will form a positive charge space region on the n side.	1	
	The space charge region on either side of the junction which gets devoid of mobile charge carrier is known as the depletion layer .		
	The loss of electrons from n side and holes from p side cause a potential difference across the junction. This is known as the called barrier potential .	1⁄2	
	b) Barrier potential decreases in forward bias .	1⁄2	
	Barrier potential increases in reverse bias.	1⁄2	3
Set-1, Q15 Set-2, Q17 Set-3, Q11	Effect in each case1½Justification in each case1½		
	 Anode current will increase with increase of intensity More is intensity of light, more is the number of photons and hence more number of electrons are emitted 	1/2 1/2	
	ii) No effect	1⁄2	

	Frequency of light affects the maximum K.E. of the emitted photoelectrons.	1⁄2	
	iii) Anode current will increase with anode potentialMore anode potential will accelerate the electrons more till it attains a saturation value and get them collected at the anode at a faster rate.	1/2 1/2	3
Set-1, Q16 Set-2, Q18 Set-3, Q12	Active state1/2Circuit diagram1Working1/2Reasons in each case1		
	<u>Active State :</u> When the emitter base junction is forward biased and the base collector junction is reverse biased with $V_i > 0.6V$ or $V_i > 0.3V$. (Also accept any other correct answer)	1⁄2	
	<u>Diagram</u> : R_B B C R_C		
	$V_{i} = V_{CE}$	1	
	Explanation : If V_i is +ve or –ve , changes in V_{BE} will produce changes in I_c and hence changes in V_{CE} which will appear in amplified form	1⁄2	
	Base is thin so that there are few majority carriers in it.	1⁄2	
	Emitter is heavily doped so that it supplies more number of majority charge carriers. (Note: Award 1 mark if the student writes the reason for any one case)	1⁄2	3
Set-1, Q17 Set-2, Q19 Set-3, Q13	Factors for need of modulation1½Sketch of carrier wave, modulating wave and AM wave1½		
	<u>Need of Modulation:</u> 1. To have smaller height of antenna $[h \sim \frac{\lambda}{4}]$	1⁄2	

Set-1, Q19			
Set-2, Q12	Equation of β^+ decay 1		
Set-3, Q21	Identification ¹ / ₂		
	Calculation of mass defect ¹ / ₂		
	Calculation of Q value 1		
	Equation ${}^{11}_6C \rightarrow {}^{11}_5X + i^e + v + Q$	1	
	(Also accept if the student does not write $v \text{ or } Q$ on the R.H.S.)		
	X is an isobar	1/2	
	Mass defect $(\Delta m) = m({}^{11}_{6}C) - m({}^{11}_{5}X)$	1⁄2	
	= (11.011434 - 11.009305)u		
	= 0.002129 u	1⁄2	
	$Q = \Delta m \times 931.5 \text{ MeV}$		
	$= 0.002129 \times 931.5$ MeV	1⁄2	3
	= 1.98 MeV		
Set-1, Q20			
Set-2, Q13	Valculation to find image formed by lens 1 ¹ / ₂		
Set-3, Q22	Distance of mirror from lens 1		
	For lens $\frac{1}{v} - \frac{1}{u} = \frac{1}{f}$	1⁄2	
	$\frac{1}{v} - \frac{1}{-15} = \frac{1}{+10}$	1⁄2	
	1 1 1		
	$\frac{1}{n} + \frac{1}{15} = \frac{1}{10}$	1/2	
	$\therefore v = 30 \text{ cm}$		
	Nature of image- real, magnified	1/2	
	Final image formed will be at the object itself only if image formed by lenging at	1/2	
	the position of centre of curvature of mirror	/2	
		1⁄2	
	$\therefore D = (30 + R)cm = (30 + 20)cm = 50 cm$ (Distance of mirror from lens)		3

Set-1, Q21 Set-2, Q14 Set-3, Q19	Arranging in order1½Production of infrared waves½Role of infrared waves in Earth's warmth and physical therapy1		
	Gamma(γ) rays, X-rays, Microwaves, Radiowaves	11⁄2	
	Infrared rays are produced by hot bodies / vibration of atoms and molecules	1/2	
	Infrared rays: (i) Maintain Earth's warmth through green house effect	1⁄2	
	(ii) Produce heat	1⁄2	3
Set-1, Q22 Set-2, Q15 Set-3, Q20	Process of charging capacitor1Effect of dielectric on1(i) Electric field and justification1/2+1/2(ii) Energy stored and justification1/2+1/2Process of charging1		
	The electrons, from the plate of the capacitor, which is connected to the positive terminal of the battery, move towards the battery. The reverse happens at the other plate. Hence, the plates get positively and negatively charged respectively.	1⁄2 1⁄2	
	Effect of dielectric		
	(a) Electric fields decreases	1⁄2	
	$\nabla = \frac{\sigma}{\sigma} + c + \mu = \frac{1}{\sigma}$	1⁄2	
	Because initially $E_1 = \frac{1}{\varepsilon_0}$ and finally $E_2 = \frac{1}{K} \cdot \frac{1}{\varepsilon_0}$, $E_1 = \frac{E_1}{K}$		
	L = K	1/2	
	(b) Energy stored increases		
	New capacitance $C = \begin{pmatrix} \frac{\varepsilon_0 A}{2d} \end{pmatrix} k$	1/2	3
	$=\frac{\pi}{2}C_o, \qquad \therefore C < C_o$		
	Initially Energy = $\frac{Q}{2C}$ and Energy = $\frac{Q}{C} \cdot \frac{Z}{K}$ as $1 < K < 2$		
~	Section – D		l I
Set-1, Q23 Set-2, Q23 Set-3, Q23	Necessity1Explanation; low power factor implies large power loss?1Two values each displayed by Ajit and his uncle1+1		

	 a) For the same power at high voltage, current in the transmission wires becomes smaller. ∴ power loss is less 	1/2 1/2	
	[Award $\frac{1}{2}$ mark if the student just writes $P = I^2 R$]		
	b) If power factor is less, current in the cables is more so power loss is more [Alternately $P_{av} = E_v I_v \cos \theta$	1	
	If $\cos \theta$ is less, I_v is more so power loss is more] (Award $\frac{1}{2}$ mark if the student just writes $P = E_E I_v \cos \theta$		
	 c) Values displayed By Ajit (Any two) – Social Awareness, understanding nature, concern for society 	1/2 +1/2	
	By Uncle- Knowledgeable, professional honesty, concern for society. (Also accept other suitable values)	1/2 +1/2	4
	Section - E		
Set-1, Q24 Set-2, Q26 Set-3, Q25	Definition of self-inductance1Expression for energy stored2Direction of induced current1/2Duration of induced current1/2Graphs of magnetic flux and induced e.m.f1		
	a) Self inductance of a coil is numerically equal to magnetic flux linked with the coil when unit current passes through it. $L = \frac{\varphi}{I}$ Alternately		
	Self inductance of a coil is numerically equal to induced e.m.f. produced in it when rate of change of current is unity in it.	1	
	Expression for energy Induced e.m.f. produced in coil, $\varepsilon = -L \frac{dI}{dt}$	1⁄2	
	: work done by the source, dw= + $\varepsilon I dt = LI dI$ $W = \int_0^I LI dI = \frac{1}{2} LI^2$	1/2	
	 b) Direction of induced current – clockwise (MNOP) [A student can also show the direction in the diagram itself] 	1/2+1/2 1/2	
	Duration of induced current - 1s	1⁄2	

Chandigarh SET I Page 13 of 18

Chandigarh SET I Page 15 of 18

Final Draft

17/3/2013 4:50 pm

	For First lens $\frac{1}{v_1} - \frac{1}{u} = \frac{1}{f_1}$ (<i>i</i>)	1/2	
	For Second lens $\frac{1}{v} - \frac{1}{v_1} = \frac{1}{f_2}$ (<i>ii</i>)	1⁄2	
	By adding i) and ii) $\frac{1}{v} - \frac{1}{u} = \frac{1}{f_1} + \frac{1}{f_2}$	1/2	
	Or $\frac{1}{f} = \frac{1}{f_1} + \frac{1}{f_2}$		
	b) Ray Diagram	1	
	Given A=60°, $\mu = \sqrt{3}$ It is minimum deviation position of prism, $\therefore r = \frac{A}{2} = 30^{\circ}$	1⁄2	
	$\mu = \frac{\sin i}{\sin r}$ $\therefore \sqrt{3} \times \sin 30 = \sin i$ $\Rightarrow i = 60^{\circ}$ $\therefore e = 60^{\circ}$	1/2 1/2	
	i + e = A + D $60 + 60 = 60 + D : D = 60^{\circ}$	1⁄2	5
	Alternately $[i = \frac{A + D_m}{2} \therefore D_m = 60^\circ]$		
Set-1, Q26 Set-2, Q25 Set-3, Q24	Expression for potential energy2Numerical3		
	 a) Expression for potential energy i) To bring charge q₁ from ∞ to point(r₁) Work done = W₁ = q₁V(r₁) 	1/2	

Chandigarh SET I Page 16 of 18

	ii) To bring charge q_2 from ∞ to point($\vec{r_2}$)		
	Work done = $W_2 = q_2 V(r_2) + \frac{1}{4\pi\varepsilon_0} \cdot \frac{q_1 q_2}{r_{12}}$	1/2	
		72	
	: Potential energy $U = W_1 + W_2 = q_1 V(r_1) + q_2 V(r_2) + \frac{Kq_1q_2}{r_{12}}$	1	
		1	
	b) $U_i = \frac{1}{4\pi\varepsilon_o} \left[\frac{Q \times 2Q}{l} + \frac{Q(-3)Q}{l} + \frac{2Q \times (-3)Q}{l} \right]$	1	
	$=-\frac{1}{1}\frac{7Q^2}{Q^2}$		
	$4\pi\varepsilon_0 l$		
	$U_f = \frac{1}{4\pi\varepsilon_o} \left[\frac{Q \times 2Q}{\frac{l}{2}} + \frac{Q(-3)Q}{\frac{l}{2}} + \frac{2Q \times (-3)Q}{\frac{l}{2}} \right]$		
	$=-\frac{1}{4\pi s}\frac{14Q^2}{l}$	1	
	$W = U_f - U_i = -\frac{1}{\sqrt{Q^2}}$	1	5
	$4\pi\varepsilon_0$ l		
	(If a student writes $U_i = \frac{1}{4\pi\varepsilon_0} \left[\sum \sum \frac{q_i q_j}{r_{ii}} \right]$, award ¹ / ₂ mark)		
	Or		
	Definition of electric flux 1		
	S.I. unit $\frac{1}{2}$		
	State and explain Gauss's law 1 ¹ / ₂ Outward flux 1		
	Flux is independent of shape and size 1		
	Electric flux through a given area is defined as the number of electric field		
	lines crossing normally through that area	1	
	[Alternately,		
	Electric flux is the surface integral of electric field over the surface		
	$\Phi = \oint \vec{E} \cdot \vec{ds}]$		
	$a \cdot a \cdot$		
	S.I. unit - Nm^2C^{-1} or Vm	1/2	
	Gauss Law: Electric flux through a given closed surface is $\frac{1}{\varepsilon_1}$ times the	11⁄2	
	charge enclosed by the closed surface		
	[Alternatively: $\phi = \frac{q}{\epsilon}$]		
	c_0		
	Flux of a point charge placed at the centre of cube = $\frac{q}{\epsilon_0}$	1	
Cł	andigarh SET I Page 17 of 18 Final Draft 17/3/2013	4:50 pm	1

As the Electric field is radial and inversely proportional to the square of distnce. Therefore, it is independent of shape and size. The number of electric field lines, crossing normally through a closed surface depends only on the charge enclosed by it.	1	5
--	---	---