MARKING SCHEME

SET 55/1/C

Q. No.	Expected Answer / Value Points	Mar ks	Total Marks
Section - A			
$\begin{aligned} & \hline \text { Set-1, Q1 } \\ & \text { Set-2, Q5 } \\ & \text { Set-3, Q2 } \end{aligned}$	Power factor $=1$	1	1
$\begin{aligned} & \text { Set-1, Q2 } \\ & \text { Set-2, Q4 } \\ & \text { Set-3, Q5 } \end{aligned}$	i) Width of depletion layer will decrease ii) potential barrier will decrease iii) junction will conduct (Any one point)	1	1
$\begin{aligned} & \hline \text { Set-1, Q3 } \\ & \text { Set-2, Q2 } \\ & \text { Set-3, Q4 } \end{aligned}$	$\vec{P}=\epsilon_{0} \quad X_{e} \vec{E}$ (Also accept if the student writes $\overrightarrow{\mathrm{P}} \propto \overrightarrow{\mathrm{E}}$ or $\overrightarrow{\mathrm{P}}=X_{e} \overrightarrow{\mathrm{E}}$)	1	1
$\begin{aligned} & \hline \text { Set-1, Q4 } \\ & \text { Set-2, Q3 } \\ & \text { Set-3, Q1 } \end{aligned}$	Mobility is defined as drift velocity per unit electric field or $\mu=\frac{v_{d}}{E}$ S.I. Unit - $\mathrm{m}^{2} / V s$ or $\mathrm{Cm} / \mathrm{Ns}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
$\begin{aligned} & \text { Set-1, Q5 } \\ & \text { Set-2, Q1 } \\ & \text { Set-3, Q3 } \end{aligned}$	$\frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)$ $\therefore \mu=1.5$ (Award 1 mark even if direct answer is written)	$1 / 2$ $1 / 2$	1
Section - B			
$\begin{aligned} & \text { Set-1, Q6 } \\ & \text { Set-2, Q7 } \\ & \text { Set-3, Q10 } \end{aligned}$	Two differences between Interference and Diffraction pattern Interference Diffraction 1 All the bright bands are of same intensity. Intensity of bright bands goes on decreasing with increasing order. 2 All the bright bands are of same width. Not of same width. 3 Dark bands may be completely dark. Not completely dark. 4 Number of fringes are more. Less in number. (Any two) [Award only 1 mark if student draws intensity distribution curves for both without writing points]	1×2	2

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Difference in Construction - 1 \\
Difference in Working - 1
\end{tabular} \& \[
\begin{array}{|l}
1 / 2+ \\
1 / 2 \\
\\
1 / 2+ \\
1 / 2
\end{array}
\] \& 2 \\
\hline \[
\begin{aligned}
\& \text { Set-1, Q7 } \\
\& \text { Set-2, Q10 } \\
\& \text { Set-3, Q8 }
\end{aligned}
\] \& \begin{tabular}{l}
Postulate - 1 \\
Formula for \(H_{\alpha}^{\prime}\) line - \(1 / 2\) \\
Substitution and calculation- \(1 / 2\) \\
Postulate- Energy is radiated when an electron jumps from a (permitted) higher to lower orbit and it equal to the difference in energy in the two orbits.
\[
\begin{aligned}
\& h v=E_{i}-E_{f} \\
\frac{1}{\lambda_{\alpha}}= \& R_{H}\left[\frac{1}{2^{2}}-\frac{1}{3^{2}}\right] \\
= \& 1.03 \times 10^{7} \times \frac{5}{36} \quad \because \lambda_{\alpha}=6.99 \times 10^{-7} \mathrm{~m}=699 \mathrm{~nm}
\end{aligned}
\] \\
[Award \(1 / 2\) mark if student only writes \(\frac{1}{\lambda}=R_{H}\left[\frac{1}{n_{f}{ }^{2}}-\frac{1}{n_{i} 2}\right]\)
\end{tabular} \& 1

$1 / 2$
$1 / 2$ \& 2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
\& \hline \text { Set-1, Q8 } \\
\& \text { Set-2, Q6 } \\
\& \text { Set-3, Q9 }
\end{aligned}
\] \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Kirchhoff's laws \& \(1 / 2+1 / 2\) \\
To justify them \& \(1 / 2+1 / 2\) \\
\hline
\end{tabular} \\
Kirchhoff's I Law: (JUNCTION LAW) \\
Sum of the incoming currents at a junction = Sum of outgoing currents \\
[Alternatively \\
Algebraic sum of all the currents meeting at a junction in the electrical circuit is zero] \\
\(2^{\text {nd }}\) Law : (LOOP LAW) \\
The algebraic sum of the changes in potential around any closed loop involving resistors and cells in the loop is zero \\
[Alternatively \\
In any closed electrical part of circuit, sum of the e.m.f s is equal to sum of products of various currents and resistances through which currents pass.] \\
To justify \\
First law is based on the law of conservation of charge. \\
Second Law is based on the law of conservation of energy.
\end{tabular} \& \(1 / 2\)

$1 / 2$

$1 / 2$ \& 2

\hline \[
$$
\begin{aligned}
& \hline \text { Set-1, Q9 } \\
& \text { Set-2, Q8 } \\
& \text { Set-3, Q7 }
\end{aligned}
$$

\] \& | Formula for de Broglie wavelength - 1 Calculation and result - 1 |
| :--- |
| Formula used $\lambda=\frac{h}{m v}=\frac{h}{\sqrt{2 m E}}$ $\frac{\lambda_{1}}{\lambda_{2}}=\sqrt{\frac{E_{2}}{E_{1}}}$ $\text { since } E_{n} \propto \frac{1}{n^{2}}$ |
| For $n=2 \quad E_{2}=\frac{E_{1}}{4}$ $\therefore \frac{\lambda_{1}}{\lambda_{2}}=\sqrt{\frac{1}{4}}=\frac{1}{2}$ |
| [Award $1 / 2$ mark if the student only writes $\lambda=\frac{h}{m v}$] Also accept any other correct alternative answer. | \& 1

1
$1 / 2$
$1 / 2$ \& 2

\hline \[
$$
\begin{aligned}
& \text { Set-1, Q10 } \\
& \text { Set-2, Q9 } \\
& \text { Set-3, Q6 }
\end{aligned}
$$

\] \& | (a) Difference between Analog and Digital signal
 (b) Any two uses of internet | 1 |
| :--- | :--- |
| | 1 | \& \&

\hline \& $\begin{array}{llllll}\text { andigarh } & \text { SET I Page } 3 \text { of } 18 & \text { Final Draft } & 17 / 3 / 2013 & 4: 50\end{array}$ \& pm \&

\hline
\end{tabular}

	Biot Savart's law $\overrightarrow{d B} \propto I \frac{\overrightarrow{d l} \times \vec{r}}{r^{3}}$ Or $\overrightarrow{d B}=\frac{\mu_{o}}{4 \pi} I \frac{\overrightarrow{d l} \times \hat{r}}{r^{2}}$ [Also accept if the student writes $d B \propto I, d B \propto d l$ and $d B \propto \frac{1}{r^{2}}$] Derivation The resultant magnetic field will be along the axis as the perpendicular (to the axis) components cancel out in pairs. $\begin{aligned} \mathrm{B} & =\int_{o}^{e \pi R} d B \cos \theta \\ & =\int_{o}^{2 \pi R} \frac{\mu_{0}}{4 \pi} \frac{I d l}{\left(R^{2}+x^{2}\right)} \frac{R}{\left(R^{2}+x^{2}\right)^{1 / 2}} \\ & =\frac{\mu_{0} I}{4 \pi} \frac{2 \pi R^{2}}{\left(R^{2}+x^{2}\right)^{3 / 2}}=\frac{\mu_{0} I R^{2}}{2\left(R^{2}+x^{2}\right)^{3 / 2}} \end{aligned}$ At centre, $\mathrm{x}=0$ $\therefore B_{0}=\frac{\mu_{0} I}{2 R}$	$1 / 2$	3
$\begin{aligned} & \text { Set-1, Q13 } \\ & \text { Set-2, Q22 } \\ & \text { Set-3, Q17 } \end{aligned}$	Polaroid 1 Transverse nature of light 1 Required Explanation 1 Polaroid consists of long chain molecules aligned in a particular direction Transverse nature of light.	1	

$\begin{array}{llllll}\text { Chandigarh } & \text { SET I } & \text { Page } 6 \text { of } 18 & \text { Final Draft } & 17 / 3 / 2013 & 4: 50 \mathrm{pm}\end{array}$

	breakdown region giving the regulated output voltage. OR a) Explanation Due to concentration gradient across p and n sides, holes from p diffuse into n section and leave behind ionized acceptor (negatively) ions which are immobile. As holes continue to diffuse from p to n , a layer of negative charge on p side of junction is formed. Similarly, the diffusion of electrons from n to p will form a positive charge space region on the n side. The space charge region on either side of the junction which gets devoid of mobile charge carrier is known as the depletion layer. The loss of electrons from n side and holes from p side cause a potential difference across the junction. This is known as the called barrier potential . b) Barrier potential decreases in forward bias . Barrier potential increases in reverse bias.	1/2	3
$\begin{aligned} & \hline \text { Set-1, Q15 } \\ & \text { Set-2, Q17 } \\ & \text { Set-3, Q11 } \end{aligned}$	Effect in each case $11 / 2$ Justification in each case $11 / 2$ i) Anode current will increase with increase of intensity More is intensity of light, more is the number of photons and hence more number of electrons are emitted ii) No effect	$1 / 2$ $1 / 2$ $1 / 2$	
	$\begin{array}{lllll}\text { ndigarh } & \text { SET I } & \text { Page 7 of } 18 & \text { Final Draft } & 17 / 3 / 2013\end{array}$	p	

	Frequency of light affects the maximum K.E. of the emitted photoelectrons. iii) Anode current will increase with anode potential More anode potential will accelerate the electrons more till it attains a saturation value and get them collected at the anode at a faster rate.	$1 / 2$ $1 / 2$ $1 / 2$	3
Set-1, Q16 Set-2, Q18 Set-3, Q12	Active state $1 / 2$ Circuit diagram 1 Working $1 / 2$ Reasons in each case 1 Active State: When the emitter base junction is forward biased and the base collector junction is reverse biased with $V_{i}>0.6 \mathrm{~V}$ or $V_{i}>0.3 \mathrm{~V}$. (Also accept any other correct answer) Diagram : Explanation : If V_{i} is +ve or -ve , changes in $V_{B E}$ will produce changes in I_{c} and hence changes in $V_{C E}$ which will appear in amplified form Base is thin so that there are few majority carriers in it. Emitter is heavily doped so that it supplies more number of majority charge carriers. (Note: Award 1 mark if the student writes the reason for any one case)	1/2	3
$\begin{aligned} & \text { Set-1, Q17 } \\ & \text { Set-2, Q19 } \\ & \text { Set-3, Q13 } \end{aligned}$	Factors for need of modulation $11 / 2$ Sketch of carrier wave, modulating wave and AM wave $11 / 2$ Need of Modulation: 1. To have smaller height of antenna $\left[h \sim \frac{\lambda}{4}\right]$	1/2	

	2. So that more power is radiated by the antenna, $P \propto \frac{1}{\lambda^{2}}$ 3. To avoid mixing up of signals from different ransmissions.	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
$\begin{aligned} & \hline \text { Set-1, Q18 } \\ & \text { Set-2, Q11 } \\ & \text { Set-3, Q14 } \end{aligned}$	Identification of circuit elements $11 / 2$ Impedance value $1 / 2$ Plot of circuit vs frequency $1 / 2$ Significance of plot $1 / 2$ Identification of elements X- Resistor Y- Inductor Z- Capacitor Impedence $\mathrm{Z}=\mathrm{R}$ Since $X_{L}=X_{C}$ (Also accept if the student writes $Z=\sqrt{R^{2}+\left(X_{L}-X_{C}\right)^{2}}=\mathrm{R}$ Plot of current vs frequency (Only one curve is expected) Significance, at $w=\omega_{o}$ (resonance frequency) current is maximum (Alternatively: Gives information about sharpness of resonance or quality factor of the circuit)	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3

$\begin{array}{llllll}\text { Chandigarh } & \text { SET I } & \text { Page } 9 \text { of } 18 & \text { Final Draft } & 17 / 3 / 2013 & 4: 50 \mathrm{pm}\end{array}$

\begin{tabular}{|c|c|c|c|}
\hline \[
\begin{aligned}
\& \hline \text { Set-1, Q19 } \\
\& \text { Set-2, Q12 } \\
\& \text { Set-3, Q21 }
\end{aligned}
\] \& \begin{tabular}{l}
\begin{tabular}{lc}
Equation of \(\beta^{+}\)decay \& 1 \\
Identification \& \(1 / 2\) \\
Calculation of mass defect \& \(1 / 2\) \\
Calculation of Q value \& 1 \\
\hline
\end{tabular} \\
Equation \({ }_{6}^{11} C \rightarrow{ }_{5}^{11} X+i^{e}+v+Q\) \\
(Also accept if the student does not write \(v\) or \(Q\) on the R.H.S.) \\
X is an isobar
\[
\begin{aligned}
\& \text { Mass defect }(\Delta \mathrm{m})=m\left({ }_{6}^{11} C\right)-m\left({ }_{5}^{11} \mathrm{X}\right) \\
\&=(11.011434-11.009305) \mathrm{u} \\
\&=0.002129 \mathrm{u} \\
\& \mathrm{Q}=\Delta \mathrm{m} \times 931.5 \mathrm{MeV} \\
\&= 0.002129 \times 931.5 \mathrm{MeV} \\
\&= 1.98 \mathrm{MeV}
\end{aligned}
\]
\end{tabular} \& 1
1
\(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline \[
$$
\begin{aligned}
& \hline \text { Set-1, Q20 } \\
& \text { Set-2, Q13 } \\
& \text { Set-3, Q22 }
\end{aligned}
$$

\] \& | Calculation to find image formed by lens $11 / 2$
 Nature of image $1 / 2$
 Distance of mirror from lens 1 |
| :--- |
| For lens $\frac{1}{v}-\frac{1}{u}=\frac{1}{f}$ $\begin{aligned} & \frac{1}{v}-\frac{1}{-15}=\frac{1}{+10} \\ & \frac{1}{v}+\frac{1}{15}=\frac{1}{10} \\ & \therefore v=30 \mathrm{~cm} \end{aligned}$ |
| Nature of image- real, magnified |
| Final image formed will be at the object itself only if image formed by lens is at the position of centre of curvature of mirror $\therefore D=(30+R) \mathrm{cm}=(30+20) \mathrm{cm}=50 \mathrm{~cm}$ |
| (Distance of mirror from lens) | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline
\end{tabular}

Section - D					
Set-1, Q23		1			
Set-2, Q23	Necessity	1			
Set-3, Q23	Explanation; low power factor implies large power loss?	$1+1$			
	Two values each displayed by Ajit and his uncle				

	a) Magnetic field on the axis of a finite solenoid Magnetic field due to element dx at point P $d B=\frac{\mu_{0} n d x I a^{2}}{2\left[(r-x)^{2}+a^{2}\right]^{3 / 2}}$ $\therefore B=\int d B=\frac{\mu_{0} I a^{2} \times n}{2} \int_{-l}^{+l} \frac{d x}{\left[(r-x)^{2}+a^{2}\right]^{3 / 2}}$ For $\mathrm{r} \gg a,(\mathrm{r} \gg l)$ $\therefore B=\frac{\mu_{0} I a^{2} n}{2 \times r^{3}} \int_{-l}^{+l} d x=\frac{\mu_{0} n I}{2} \frac{2 l a^{2}}{r^{3}}$ Magnetic moment of solenoid, $m=(n \times 2 l) I\left(\pi a^{2}\right)$ $\therefore B=\frac{\mu_{o}}{4 \pi} \frac{2 m}{r^{3}}$ same as that of a bar magnet	1/2	5
$\begin{aligned} & \hline \text { Set-1, Q25 } \\ & \text { Set-2, Q24 } \\ & \text { Set-3, Q26 } \end{aligned}$	Conditions for constructive and destructive interference $1^{1 / 2}$ Expression for fringe width 2 Fringe pattern in double slit related to diffraction pattern $1 / 2$ Numerical 1 Diagram	1/2	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
ii) To bring charge \(q_{2}\) from \(\infty\) to point \(\left(\overrightarrow{r_{2}}\right)\) \\
Work done \(=W_{2}=q_{2} V\left(r_{2}\right)+\frac{1}{4 \pi \varepsilon_{o}} \cdot \frac{q_{1} q_{2}}{r_{12}}\) \\
\(\therefore\) Potential energy \(U=W_{1}+W_{2}=q_{1} V\left(r_{1}\right)+q_{2} V\left(r_{2}\right)+\frac{K q_{1} q_{2}}{r_{12}}\)
\[
\text { b) } \begin{aligned}
U_{i} \& =\frac{1}{4 \pi \varepsilon_{o}}\left[\frac{Q \times 2 Q}{l}+\frac{Q(-3) Q}{l}+\frac{2 Q \times(-3) Q}{l}\right] \\
=- \& \frac{1}{4 \pi \varepsilon_{o}} \frac{7 Q^{2}}{l} \\
U_{f} \& =\frac{1}{4 \pi \varepsilon_{o}}\left[\frac{Q \times 2 Q}{\frac{l}{2}}+\frac{Q(-3) Q}{\frac{l}{2}}+\frac{2 Q \times(-3) Q}{\frac{l}{2}}\right] \\
\& =-\frac{1}{4 \pi \varepsilon_{o}} \frac{14 Q^{2}}{l}
\end{aligned}
\]
\[
W=U_{f}-U_{i}=-\frac{1}{4 \pi \varepsilon_{o}} \frac{7 Q^{2}}{l}
\] \\
(If a student writes \(U_{i}=\frac{1}{4 \pi \varepsilon_{o}}\left[\sum \sum \frac{q_{i} q_{j}}{r_{i j}}\right]\), award \(1 / 2\) mark) \\
Or \\
Electric flux through a given area is defined as the number of electric field lines crossing normally through that area \\
[Alternately, \\
Electric flux is the surface integral of electric field over the surface
\[
\Phi=\oint \vec{E} \cdot \overrightarrow{d s}]
\] \\
S.I. unit - \(\mathrm{Nm}^{2} \mathrm{C}^{-1}\) or Vm \\
Gauss Law: Electric flux through a given closed surface is \(\frac{1}{\varepsilon_{o}}\) times the charge enclosed by the closed surface \\
[Alternatively: \(\phi=\frac{q}{\varepsilon_{0}}\)] \\
Flux of a point charge placed at the centre of cube \(=\frac{q}{\varepsilon_{o}}\)
\end{tabular} \& \(1 / 2\)
1
1
1

1
1
1
1
1
1 \& 5

\hline \& ndigarh $\begin{array}{llll} & \text { SET I Page } 17 \text { of } 18 \text { Final Draft 17/3/2013 }\end{array}$ \& \&

\hline
\end{tabular}

	As the Electric field is radial and inversely proportional to the square of distnce. Therefore, it is independent of shape and size. The number of electric field lines, crossing normally through a closed surface depends only on the charge enclosed by it.	1	5

