MARKING SCHEME

SET 55/1/P

Q. No.	Expected Answer / Value Points	Marks	Total Marks
Section A			
$\begin{aligned} & \hline \text { Set-1, Q1 } \\ & \text { Set-2, Q5 } \\ & \text { Set-3, Q2 } \end{aligned}$	The emf of a cell is equal to the terminal voltage when the circuit is open. Alternatively The emf of a cell is greater than the terminal voltage when current is drawn through the cell. Alternatively The emf of a cell is less than the terminal voltage when the cell is being charged. Alternatively $\begin{aligned} & \varepsilon=V+i r \quad \varepsilon=V \quad \text { when } i=0 \\ & \varepsilon>V \quad \text { when } i>0 \\ & \varepsilon<V \quad \text { when } i<0 \end{aligned}$ Alternatively Emf of cell is work done by the cell force (of non-electrostatic origin) per unit charge, as charges are transferred through the cell. The terminal voltage is work done by the force of electric field per unit charge as charge move across the terminals of the cell through the external circuit. (Award this 1 mark if the student distinguishes between emf and terminal voltage in any one of the ways given above)	1 or 1 or 1 or 1 or 1	1
$\begin{aligned} & \text { Set-1, Q2 } \\ & \text { Set-2, Q4 } \\ & \text { Set-3, Q5 } \end{aligned}$	The kinetic energy of a negative charge decreases in going from point B to point A in the given field configuration. Alternatively Decreases	1 or 1	1
$\begin{aligned} & \text { Set-1, Q3 } \\ & \text { Set-2, Q2 } \\ & \text { Set-3, Q4 } \end{aligned}$	A repeater picks up a signal, amplifies it, and re transmits it, thereby extending the range of a communication system. Alternatively Amplifies and retransmits the signal.	1 Or 1	1
$\begin{gathered} \hline \text { Set-1, Q4 } \\ \text { Set-2, Q3 } \\ \text { Set-3, Q1 } \end{gathered}$	Concave Lens Alternatively It can be convex when the ambience is of higher refractive index. (Award one mark if the student writes the lens as a convex lens and gives the reason for this)	1 Or 1	1

$\begin{aligned} & \hline \text { Set-1, Q5 } \\ & \text { Set-2, Q1 } \\ & \text { Set-3, Q3 } \end{aligned}$	 (Award $1 / 2$ mark if the student just writes $X_{C}=\frac{1}{w c}$ but does not draw the graph)	1	1
	Section B		
$\begin{aligned} & \text { Set-1, Q6 } \\ & \text { Set-2, Q7 } \\ & \text { Set-3, Q10 } \end{aligned}$	Writing the two equations: Values of R \& S: $\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$ $\begin{align*} & \frac{R}{S}=\frac{40}{60} \Rightarrow 3 R=2 S \tag{i}\\ & \frac{R+10}{S}=\frac{60}{40} \Rightarrow 2 R+20=3 S \tag{ii} \end{align*}$ Simultaneously solving the equations we get $R=8 \Omega \quad \text { and } \quad S=12 \Omega$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$	
$\begin{aligned} & \text { Set-1, Q7 } \\ & \text { Set-2, Q10 } \\ & \text { Set-3, Q8 } \end{aligned}$	Writing $\mu=\frac{1}{\sin i_{c}}$ $1 / 2$ Calculating V $1 / 2$ Writing Yes or Depends $1 / 2$ Reason $1 / 2$$\begin{aligned} & i+e=A+D \\ & \frac{3}{4} A+\frac{3}{4} D=A+D \\ & D=\frac{1}{2} A=\frac{1}{2} \times 60^{\circ}=30^{\circ} \end{aligned}$ Or $\begin{aligned} & \mu=\frac{1}{\sin ^{i} c}=\frac{1}{\sin 45^{\circ}}=\sqrt{2} \\ & V=\frac{C}{\mu}=\frac{3 \times 10^{8}}{\sqrt{2}} \mathrm{~m} / \mathrm{s} \end{aligned}$	1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2

	$=2.1 \times 10^{8} \mathrm{~m} / \mathrm{s}$ (also accept $\left.V=\left(\frac{3}{\sqrt{2}}\right) \times 10^{8} \mathrm{~m} / \mathrm{s}\right)$ Yes (or Depends) Reason: μ depends upon λ, the wavelength of the incident light (or $\mu=A+\frac{B}{\lambda^{2}}$)	$1 / 2$ $1 / 2$	2
$\begin{aligned} & \hline \text { Set-1, Q8 } \\ & \text { Set-2, Q6 } \\ & \text { Set-3, Q9 } \end{aligned}$	Writing $2 \pi r=n \lambda$ $1 / 2$ De Broglie formula $\lambda=\frac{h}{p}$ $1 / 2$ Getting Bohr's second postulate 1 For a stationary state $2 \pi r=n \lambda$ By De-Broglie hypothesis wavelength of electron-wave is $\lambda=\frac{h}{p}$ Equation (i) and (ii) give $r p=n \frac{h}{2 \pi}$ i.e. $l=\frac{n h}{2 \pi}(\because l=p r)$ which is Bohr's second postulate of quantization of angular momentum.	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	2
$\begin{aligned} & \hline \text { Set-1, Q9 } \\ & \text { Set-2, Q8 } \\ & \text { Set-3, Q7 } \end{aligned}$	In ground wave communication, the e.m. wave glides over the earth's surface. At high frequencies, the rate of energy dissipation of the signal increases and the signal gets attenuated over a short distance. Alternatively As the ground wave glides over the earth surface, its changing magnetic field induces an electric current, on the surface. At higher frequency the rate of variation (of magnetic field) is larger inducing a larger current, so energy dissipation of the signal is more. So the higher the frequency the more rapid is the signal alternation.	1 1 or 1 1 1	2
$\begin{aligned} & \text { Set-1, Q10 } \\ & \text { Set-2, Q9 } \\ & \text { Set-3, Q6 } \end{aligned}$	Photon: $h v=\frac{h c}{\lambda}=E$ $1 / 2$ Electron: $\lambda=\frac{h}{P}$ $1 / 2$ Calculating P 1 Photon: $h v=E=\frac{h c}{\lambda}$ or $\lambda=\frac{h c}{E}$ Electron: $\lambda=\frac{h}{p}$ $\therefore \frac{h}{p}=\frac{h c}{E} \quad \text { or } p=\frac{E}{c}=2 \times 10^{-25} \mathrm{~kg} \mathrm{~ms}^{-1}$	$1 / 2$ $1 / 2$ 1	2
	Page 3 of 18 Final Draft 16/3/2015	$3: 30$	

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
Set-1, Q13 \\
Set-2, Q22 \\
Set-3, Q17
\end{tabular} \& \begin{tabular}{l}
\begin{tabular}{|lc|}
\hline (a) Definition \& 1 \\
(b) (i) Number of photons comparison \& \(1 / 2\) \\
Reason \& \(1 / 2\) \\
(iii) Maximum K.E. \& \(1 / 2\) \\
Reason \& \(1 / 2\) \\
\hline
\end{tabular} \\
a) Intensity of radiation is determined by the number of photons incident per unit area per unit time. \\
b) (i) Red Light \\
Reason: Energy of photon of red light is less than that of a photon of blue light \\
(Alternative \(h v_{\text {red }}<h v_{\text {blue }}\)) \\
(ii) Blue Light \\
Reason: Energy of photon of Blue light is more than that of a photon of red light \\
(Alternative \(h v_{\text {blue }}>h v_{\text {red }}\)) \\
Note: \\
[If the student writes the Einstein's photoelectric equation:
\[
h v=h v_{0}+\frac{1}{2} m v_{\max }^{2}
\] \\
Instead of the reason in part (ii) award him/her \(1 / 2\) mark only.]
\end{tabular} \& 1
\(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$ \& 3

\hline \[
$$
\begin{aligned}
& \text { Set-1, Q14 } \\
& \text { Set-2, Q16 } \\
& \text { Set-3, Q18 }
\end{aligned}
$$

\] \& | (a) Two reasons $1 / 2+1 / 2$
 (b) Writing mirror equation $1 / 2$
 (c) Proving the given result $11 / 2$ |
| :--- |
| Reasons: Reflecting telescopes can be made to have |
| (i) Larger light gathering power |
| (ii) Better resolution |
| (Also: less expensive; easier to design; free from aberrations) (any two) $\begin{equation*} \frac{1}{v}+\frac{1}{u}=\frac{1}{f} \Rightarrow v=\frac{u f}{u-f} \tag{i} \end{equation*}$ |
| As ' u ' is always $-v e$ for a real object and ' f 'is + ve for a convex mirror (as per Cartesian sign convention) |
| $\therefore v$ is always + ve . |
| Hence, the image is always on the other side of the mirror (and hence, virtual for all u) | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3

\hline \[
$$
\begin{aligned}
& \text { Set-1, Q15 } \\
& \text { Set-2, Q17 } \\
& \text { Set-3, Q11 }
\end{aligned}
$$

\] \& | Statement of the law 1
 Example 1
 Numerical 1 |
| :--- |
| Lenz's law applies to closed circuit determining the direction of induced current states "The induced emf will appear in such a direction that it opposes the change that produced it." | \& 1 \&

\hline
\end{tabular}

	(Also accept any other example appropriate) $\begin{aligned} & \|\varepsilon\|=L \frac{d i}{d t} \\ & \|\varepsilon\|=5 \times 10^{-3} \times \frac{(4-1)}{30 \times 10^{-3}} V=0.5 V \end{aligned}$ OR In magnetism, Gauss's law states: $\oint \vec{B} \cdot \overrightarrow{d s}=0$ In electrostatistics, Gauss's law states: $\oint \vec{E} \cdot \overrightarrow{d s}=\frac{q}{\varepsilon_{o}}$ Reason: Isolated magnetic poles do not exist $\begin{aligned} & B=\frac{\mu_{0}}{4 \pi}\left(\frac{m}{R^{3}}\right)=10^{-7}\left(\frac{m}{R^{3}}\right) \\ & m=\frac{0.4 \times 10^{-4} \times\left(6400 \times 10^{3}\right)^{3}}{10^{-7}} \\ & =1.1 \times 10^{23} \mathrm{Am}^{2} \end{aligned}$	1/2	3 3
$\begin{aligned} & \hline \text { Set-1, Q16 } \\ & \text { Set-2, Q18 } \\ & \text { Set-3, Q12 } \end{aligned}$	Production $1 / 2$ Source of Energy $1 / 2$ Schematic Sketch $1 / 2$ Directions of \vec{E} and $\vec{B}:$ $1 / 2+1 / 2$ Relation $1 / 2$ Production: Electromagnetic waves are produced by 'accelerated Charges' The battery/ Electric field that accelerates the charge carriers is the source of energy of em waves.	$1 / 2$ $1 / 2$	

Patna
Page 6 of 18
Final Draft
16/3/2015 03:30 pm

	(Award $1 / 2$ mark even if the student writes only one of these) Circuit diagram Principle: Even small reverse bias voltage (5V) can produce a very high electric field because the depletion region is very thin Working - The unregulated DC voltage is connected to the Zener diode through a series resistance R_{S} such that the Zener diode is reverse biased. In break down region, the Zener voltage remains constant even though the current through Zener diode changes. This helps to regulate the output voltage	1/2	3
$\begin{aligned} & \hline \text { Set-1, Q19 } \\ & \text { Set-2, Q12 } \\ & \text { Set-3, Q21 } \end{aligned}$	(i) In conductor, collision become more frequent at higher temperature lowering conductivity. (ii) In semiconductors, more electron hole pairs become available at higher temperature so conductivity increases. (iii) In insulators, the band gap is unsurpassable for ordinary temperature rise. Hence there is practically no change in their behavior.	$\begin{aligned} & 1 / 2+1 / 2+ \\ & 1 / 2 \\ & \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	3
$\begin{array}{\|l} \hline \text { Set-1, Q20 } \\ \text { Set-2, Q13 } \\ \text { Set-3, Q22 } \end{array}$	(a) Three Basic units \& their function $1 / 2+1 / 2+1 / 2$ (b) Three applications of Internet $1 / 2+1 / 2+1 / 2$ Three Basic units Transmitter: Processing \& transmission of message signal	1/2	
	atna Page 8 of 18 Final Draft 16/3/2015	:30 pm	

| Set-1, Q22
 Set-2, Q15
 Set-3, Q20 | Graph
 (a) Sharper resonance
 (Case + reason)
 (b) More power Dissipation case
 Reason | | |
| :--- | :--- | :--- | :--- | :--- |

Patna
Page 10 of 18
Final Draft
16/3/2015 03:30 pm

	 Consider a (circle) Amperian loop of radius ' d ' centered at the wire ' i ' and having its plane perpendicular to the wire. $\oint \vec{B} \cdot d \vec{l}=\mu_{0} i_{1}$ By symmetry B has the same magnitude at every point on the contour, and is tangential. If we go along the contour anticlockwise, \vec{B} is along $\overrightarrow{d l}$ and $\vec{B} \cdot d \vec{l}=B d l$ $\begin{aligned} & B \oint d l=\mu_{0} i, \quad B 2 \pi d=\mu_{0} i_{1} \\ \therefore B_{i}= & \frac{\mu_{0} i_{1}}{2 \pi d} \end{aligned}$ Now $\vec{F}_{2 i}=i_{2} \vec{l}_{2} \times \vec{B}_{i} \quad \therefore$ $\begin{aligned} F_{2 i} & \left.=i_{2} l_{2} B=\frac{\mu_{0} i_{1} i_{2} l_{2}}{2 \pi d} \text { (substituting the value of } \mathrm{B}\right) \\ \therefore \quad \frac{\text { Force }}{\text { Length }} & =\frac{\mu_{0} i_{1} i_{2}}{2 \pi d} \end{aligned}$ \vec{F} is directed towards left so wire ' 2 ' is attracted by the force of magnetic field of wire ' 1 ', acting on it. If I, reverses direction, \vec{F} is directed toward right i.e. wire 1 repels wire 2 . If $\mathrm{i}_{1}=\mathrm{i}_{2}=1 \mathrm{amp}$ and $\mathrm{d}=1 \mathrm{~m}$ then $\frac{F}{l}=\frac{\mu_{0}}{2 \pi} \mathrm{~N} / \mathrm{m}$ $=2 \times 10^{-7} \mathrm{~N} / \mathrm{m}$ Definition of SI unit of currentOrDiagram $1 / 2$ Principle $1 / 2$ Deriving the relation 2 Two assumption $1 / 2+1 / 2$ Two causes of energy loss $1 / 2+1 / 2$	1/2	5
	Patna Page 11 of $18 \quad$ Final Draft $\quad 16 / 3 / 2015$	3:3	

	Principle : A transformer is based on the phenomena of mutual induction, i.e., whenever the current flowing in the primary coil changes, an emf is induced in the secondary coil. Let $\frac{d \phi}{d t}$ be the rate of change of magnetic flux per turn of each coil $\therefore \mathrm{emf}$ induced in the primary $E_{p}=N_{p} \frac{d \phi}{d t}$ emf in secondary $E_{s}=N_{s} \frac{d \phi}{d t}$ $\mathrm{N}_{\mathrm{p}} \& \mathrm{~N}_{\mathrm{s}}$ are the no. of turns in primary \& secondary coils respectively. $\therefore \frac{E_{s}}{E_{p}}=\frac{E_{s}}{E}=\frac{N_{s}}{N_{p}}$ Assumptions (i) The flux linked (= \varnothing) with each turn of primary and secondary coils, has the same value. (ii) Induced EMF in primary $=$ applied A/c, Voltage across it. (iii) The primary resistance and current are small. (iv) There is no leakage of magnetic flux. The same magnetic flux links both, primary \& secondary coils. (v) The secondary current is small. (Any two of the above assumptions) Energy losses are due to (i) Flux leakage/ Eddy current/ Humming sound/ Heat loss $\left(I^{2} R\right)$ (ii) Hysteries loss (Any Two)	$1 / 2$ $1 / 2+1 / 2$ $1 / 2+1 / 2$	5
$\begin{aligned} & \text { Set-1, Q25 } \\ & \text { Set-2, Q24 } \\ & \text { Set-3, Q26 } \end{aligned}$	(a) Two rules \& Justification $1+1$ (b) Deriving the expression $2+1$ (a) The junction rule: When currents are steady, the sum of currents entering a	1/2	

Patna

Page 12 of 18
Final Draft
16/3/2015 03:30 pm

	For finding the field at O_{1}, due to coil 2 Total field at O_{1} due to two elements $d l_{1}$ and $d l_{2}$ of coil 2 . $=$ sum of their horizontal components $=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 \lambda d l}{(2 R)^{2}} \cos \theta=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 \lambda d l}{(2 R)^{2}} \cdot \frac{R \sqrt{3}}{R}$ $\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{2 \lambda d l}{(2 R)^{2}} \cdot \frac{\sqrt{3}}{2}$ \therefore Total field at $\mathrm{O}_{1}=\frac{\sqrt{3}}{4 \pi \varepsilon_{0}} \cdot \frac{\lambda}{4 R^{2}} \cdot\left(\sum d l\right)_{\text {over half }}$ the loop $\begin{aligned} & =\frac{\sqrt{3}}{4 \pi \varepsilon_{0}} \cdot \frac{\lambda}{4 R^{2}} \cdot \pi R \\ & =\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\sqrt{ } 3 \pi \lambda}{4 R}=\frac{\sqrt{ } 3 \pi \lambda}{16 \varepsilon_{0} R} \end{aligned}$ This field, as seen from above, is directed along the line $\mathrm{O}_{2} \mathrm{O}_{1}$. \therefore Total field at O_{1} due to both the coils $\mathrm{O}_{1}=\frac{1}{4 \pi \varepsilon_{0}}\left[\frac{(\pi \sqrt{3}) \lambda}{4 R}\right]$ (along $\mathrm{O}_{2} \mathrm{O}_{1}$) Alternatively The field at an axial point of a circular loop of radius R and linear charge density λ, is given by $\vec{E}=\frac{\lambda R}{2 \in_{0}} \frac{Z}{\left(R^{2}+Z^{2}\right)^{3 / 2}} \bar{z}$ The field at C is $\vec{E}=\vec{E}_{1}+\vec{E}_{2}=0+\frac{\lambda R}{2 \epsilon_{0}} \frac{R \sqrt{3}}{(2 R)^{3}} \quad$ towards left $=\frac{\lambda \sqrt{3}}{16 \epsilon_{0} R}$ towards left. $\left(\vec{E}_{1}=0 \text { since } z=0\right)$		$\begin{array}{r}3 \\ \\ \\ \hline 5\end{array}$
	Patna Page 15 of 18 Final Draft 16/3/2015	$3: 30$	

\begin{tabular}{|c|c|c|c|}
\hline \& (\(\vec{E}_{2}\) is towards left because \(\lambda\) is (+)ve) \& \& \\
\hline \[
\begin{aligned}
\& \hline \text { Set-1, Q26 } \\
\& \text { Set-2, Q25 } \\
\& \text { Set-3, Q24 }
\end{aligned}
\] \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline (a) Diagram \& 1 \\
Proving \(\frac{v_{2}}{v_{1}}=\frac{\sin _{i}}{\sin _{r}}\) \& 2 \\
(b) (i) Reason \& 1 \\
(ii)Brewster law \& 1 \\
\hline
\end{tabular} \\
(a) We consider refraction of a plane wave at a rarer medium, i.e., \(v_{1}>v_{2}\) The angle of refraction will be greater than angle of incidence.
\[
n_{1} \sin i=n_{2} \sin r
\]
\[
\sin i_{c}=\frac{n_{2}}{n_{1}}
\]
\[
\therefore \frac{n_{2}}{n_{1}}=\frac{\sin i}{\sin r}
\] \\
But \(\frac{n_{2}}{n_{1}}=\) ratio of speed of lights
\[
\therefore \frac{v_{2}}{v_{1}}=\frac{\sin i}{\sin r}
\] \\
(i) It absorbs the electric vectors of the incident light along the direction of alignment of its molecules and only lets the perpendicular electric vectors to go through. \\
(ii) At the Brewster's angle of incidence \(\left(\angle i_{B}\right)\)
\[
\angle i_{B}+\angle r_{B}=\frac{\pi}{2}
\]
\end{tabular} \& 1

$11 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 2
1

\hline \& Patna Page 16 of $18 \quad$ Final Draft $16 / 3 / 2015$ \& $3: 30$ \&

\hline
\end{tabular}

$$
\therefore \mu=\frac{\sin i_{B}}{\sin r_{B}}=\tan i_{B}\left(\frac{1}{2}\right)
$$

This is known as Brewsters's Law.
Or

Equivalent Focal Length	$2 \frac{1}{2}$
Obtaining the condition	1
Nature of combination + Ray diagram	1
Nature of image	$1 / 2$

The image distance V_{1} for the surface is the object distance for the second surface, Radius of curvature of the first surface is R that of the second surface is -R

$$
\begin{aligned}
& \frac{\mu_{1}}{V_{1}}-\frac{1}{u}=\frac{\mu_{1}-1}{R}(\text { Refraction at first surface }) \\
& \frac{\mu_{2}}{V}-\frac{\mu_{1}}{V_{1}}=\frac{\mu_{2}-\mu_{1}}{-R} \quad \text { (Refraction at second surface) } \\
& \therefore \frac{\mu_{2}}{V}-\frac{1}{u}=\frac{2 \mu_{1}-\mu_{2}-1}{R} \\
& \text { At } u=-\infty \quad V=f \\
& \therefore f=\frac{\mu_{2} R}{2 \mu_{1}-\mu_{2}-1}
\end{aligned}
$$

(b) For the combination to be diverging
$f<0$
This requires $\mu_{1}<\left(\frac{\mu_{2}+1}{2}\right)$
(c) for $\mu_{1}>\frac{\mu_{2}+1}{2}, f>0$

So the combination acts as a converging lens
(of focal length $f=\frac{\mu_{2} R}{2 \mu_{1}-\mu_{2}-1}$).

