MARKING SCHEME

Q. No.	Expected Answer / Value Points	Marks	Total Marks
	SECTION-A		
SET1,Q1 SET2,Q4 SET3,Q5	No work is done /		
	$W = qV_{AB} = q \ge 0$	1	1
SET1,Q2 SET2,Q1 SET3,Q3	A diamagnetic specimen would move towards the weaker region of the field while a paramagnetic specimen would move towards the stronger region./ A diamagnetic specimen is repelled by a magnet while a paramagnetic specimen moves towards the magnet./ The paramagnetic get aligned along B and the diagrammatic perpendicular to the field.	1	
			1
SET1,Q3 SET2,Q5 SET3,Q2	Transmitter, Medium or Channel and Receiver.	1	1
SET1,Q4 SET2,Q3 SET3,Q1.	It is due to least scattering of red light as it has the longest wavelength/		
	As per Rayleigh's scattering, the amount of light scattered $\propto \frac{1}{\lambda^4}$	1	1
SET1,Q5	E = 2V	1/2	
SET2,Q2 SET3,Q4		1/2	1
~,	$r = 2\Omega$	72	1
	SECTION B		
SET1,Q6 SET2,Q9 SET3,Q8.	Definition-1Reason-1/2Role of bandpass filter-1/2		
	Modulation index is the ratio of the amplitude of modulating signal to that of carrier wave	1	
	Alternatively $\mu = \frac{A_m}{A_c}$		
	Reason- To avoid distortion.	1/2	
	Role- A bandpass filter rejects low and high frequencies and allows a band of frequencies to pass through.	1⁄2	2

SET1,Q7 SET2,Q10 SET3,Q6	Path of emergent ray1Naming the face $\frac{1}{2}$ Justification $\frac{1}{2}$		
	P 30 [°] Normal B C	1	
	Face-AC		
	Here $i_c = \sin^{-1}(\frac{2}{3})$ = $\sin^{-1}(0.6)$	1/2	2
	$\angle i$ on face AC is 30° which is less than $\angle i_c$. Hence the ray get replaced here.	1⁄2	
SET1,Q8 SET2,Q6 SET3,Q7	Formulae of Kinetic energy and deBrogliea wavelength $\frac{1}{2} + \frac{1}{2}$ Calculation and Result $\frac{1}{2} + \frac{1}{2}$ Kinetic Energy for the second state- $13.6eV$ $13.6eV$	1⁄2	
	$E_{k} = \frac{13.6eV}{n^{2}} = \frac{13.6eV}{4} = 3.4X1.6X10^{-19}J$ De Broglies wavelength $\lambda = \frac{h}{\sqrt{2mE_{k}}}$	1⁄2	
	$=\frac{6.63X10^{-34}}{\sqrt{2X9.1X10^{-31}X3.4X1.6X10^{-19}}}$	1⁄2	
	= 0.067nm	1/2	2
SET1,Q9 SET2,Q8 SET3,Q10	Definition1Formula1/2Calculation and Result1/2		
	The minimum energy, required to free the electron from the ground state of the hydrogen atom, is known as Ionization Energy.	1	

	$E_o = \frac{me^4}{8 \epsilon_o^2 h^2} i.e, E_o \propto m$ Therefore, Ionization Energy will become 200 times	1/2	
	OR	1/2	2
	Formula1Calculation and Result1/2+1/2		
	$\frac{1}{\lambda} = R \left(\frac{1}{2^2} - \frac{1}{\alpha^2} \right)$ For shortest wavelength, n = α	1	
	Therefore, $\frac{1}{\lambda} = \frac{R}{4} = > \lambda = \frac{4}{R} = 4 \times 10^{-7} \text{m}$	1/2 1/2	2
SET1,Q10 SET2,Q7 SET3,Q9	a) Relation for terminal potential $\frac{1}{2}$ b) Justification $\frac{1}{2}$ c) Explanation (parallel and series) $\frac{1}{2} + \frac{1}{2}$ a) Effective resistance of the circuit $R_E = 6\Omega$		
	$\therefore I = \frac{12A}{6} = 2A$ Terminal potential difference across the cell, V=E-ir	1/2	
	Also p.d. across 4Ω resistor $=4X2V=8V$ Hence the volmeter gives the same reading in the two cases.	1/2	
	 b) In series -current same In parallel – potential same 	1/2 1/2	2
SET1 011	SECTION C		
SET1,Q11 SET2,Q15 SET3,Q22	Definition-1/2i.Diagram of Equipotential Surface1/2		
	ii.Diagram and reason $\frac{1}{2} + \frac{1}{2}$ iii.Answer and Reason $\frac{1}{2} + \frac{1}{2}$		
	Surface with a constant value of potential at all points on the surface.	1⁄2	

	i.	1⁄2	
	ii.	¹ ∕2	
	$V \propto \frac{1}{r}$	1/2	
	iii.No	1/2	
	If the field lines are tangential, work will be done in moving a charge on the surface which goes against the definition of equipotential surface.	1/2	3
SET1,Q12 SET2,Q14 SET3,Q12	Statement1Plotting the graph1Calculating value of (μ) refractive index1i. When the pass axis of a poloroid makes an angle θ with the plane of polarisation of polorised light of intensity I_o incident on it, then the intensity of the tramsmitted emergent light is given by $I=I_o cos^2 \theta$ Note: If the student writes the formula $I=I_o cos^2 \theta$ and draws the	1	

SET1,Q14			
SET2,Q12	(a) Basic nuclear process 1		
SET3,Q19			
	(b) (i) value of x, y, z 1 (ii) value of a, b, c 1		
	a. Basic nuclear reaction	1	
	$P \rightarrow n + e^+ + \nu$		
	b.(i) $x = \beta^+ / {}_1^0 e$, y =5, z =11	1	2
	(ii) $a=10$, $b=2$, $c=4$	1	3
SET1,Q15			
SET2,Q11	(i) Relation for drift velocity2(ii) Effect of temperature1		
SET3,Q21	(ii) Effect of temperature		
	i. When a potential difference is applied across a conductor, an electric		
	field is produced and free electrons are acted upon by an electric form (\mathbf{F}_{0}) . Due to this shortware conclusion of here well dimensional form (\mathbf{F}_{0}) .	1⁄2	
	force (= - Ee). Due to this, electrons accelerate and keep colliding with each other and acquire a constant (average) velocity \mathbf{P} .		
	with each other and acquire a constant (average) velocity v_d \therefore , $F_e = -Ee$		
	$\therefore, F_e = \frac{-eV}{l}$		
		1⁄2	
	-F - eV		
	As $a = \frac{1}{m} = \frac{m}{m}$		
	$a_{2} = n + a_{1}$		
	as $v = u + at$		
	$u = 0$, $t = \tau$ (relaxation time)	1/2	
		/ 2	
	$v_d = -a \tau$		
	$v_d = \frac{-eV}{lm}\tau$	1/2	
	ii. Decreases, as time of relaxation decreases.	1/2, 1/2	3
SET1,Q16			5
SET2,Q22	Proof for average power 11/2		
SET3,Q15	Effect on brightness ¹ / ₂		
	Explanation 1		
L		1	

[1	1
	i) $P_{av} = I_{av} \ge e_{av} \cos \emptyset$	1⁄2	
	For an ideal inductor, $\phi = \frac{\pi}{2}$	1⁄2	
	$\therefore P_{av} = l_{av} \ge e_{av} \cos \frac{\pi}{2}$		
	$P_{av} = 0$	1/2	
	ii) Brightness decreases	1⁄2	
	Because as iron rod is inserted inductance increases.	1/2	2
	Thus, current decreases and brightness decreases.	1⁄2	3
SET1,Q17 SET2,Q21			
SET2,Q21 SET3,Q16	i.Diagram of Formation 1/2		
	Explanation of formation of Depletion region1/2		
	Barrier potential		
	ii.Circuit diagram of Half wave rectifier ¹ / ₂		
	Explanation 1		
	i. V_{*}	1⁄2	
	i.Due to diffusion and drift, the electrons and holes move across the junctions, creating a final stage in which a region is created across the junction wall, which gets devoid of the mobile charge carriers. This region is called depletion region; the potential difference across the region is called Barriers potential	1/2+1/2	
	ii		
<u> </u>	7 FOURTH DRAFT 10 th March/2016 4:00 PM		<u> </u>

	reflected back to the earth by the ionosphere.		
SET1,Q19 SET2,Q19 SET3,Q17	i. Identification 1+1 ii. Momentary deflection of galvanometer Reason 1/2 Expressions 1/2		
	i. a. Microwaves b. X-rays	1 1	
	ii Due to conduction current in the connecting wires and a displacement current between the plates $I_d = \epsilon_0 \frac{d\phi_E}{dt}$	1/2 1/2	3
SET1,Q20 SET2,Q18 SET3,Q11	i. Collection current $\frac{1}{2} + \frac{1}{2}$ ii. Base Current $\frac{1}{2} + \frac{1}{2}$ iii. Base voltage $\frac{1}{2} + \frac{1}{2}$		
	i. Input signal Voltage AC Collector Current- $i_c = \frac{V_{ce}}{R_c} = 1.0mA$	1/2 +1/2	
	Base Current- $\vec{\iota}_b = \frac{i_c}{\beta} = \frac{1.0mA}{100} = 0.01mA$	$\frac{1}{2} + \frac{1}{2}$ $\frac{1}{2} + \frac{1}{2}$	
	Base signal Voltage= $i_b R = 0.01 \text{mA x} 1 \text{k}\Omega = 10 \text{mv}$	1/2 +1/2	3

		1	3
	SECTION D		
SET1,Q23 SET2,Q23 SET3,Q23	a. Principle and working1+1b. Two values, each, displayed by1i. Ram $\frac{1}{2}+\frac{1}{2}$ ii. School teacher $\frac{1}{2}+\frac{1}{2}$ a. Principle:Whenever a coil is rotated in a magnetic field, an emf is induced in it due to the change in magnetic flux linked with it.Working- As the coil rotates, its inclination (θ) with respect to the field changes.Hence sinosodial /varying emf(= $e_o sin\omega t$) is obtained./May also be explained graphically.[Note- Give full marks if the student obtains the expression for induced emf mathematically.]b. Values Ram- Scientific aptitude, curiosity, keenness to learn, positive approach, etc(any two)Teacher- Dedication, concern for students, depth of knowledge, generous, positive attitude towards queries, motivational approach.(any two)	1 1/2 +1/2 1/2 +1/2	3

	SECTION E		
SET1,Q24 SET2,Q26 SET3,Q25	i. Labelled diagram1Principle1ii. Expression for the turn ratio in terms of voltage1/2iii. Ratio of primary and secondary currents1in terms of turns1iv. Current drawn by primary1Formula-1/2Calculation and result1/2 +1/2	1	
	i.Labelled diagram SOFT IRON CORE		

SET: 1025
SET: 2024
Q25.
Q25.

$$\begin{array}{c}
 i. Derivation of \frac{n_2}{v} - \frac{n_1}{u} = \frac{(n_2 - n_1)}{R} & 1^{l_2} \\
 \frac{1}{f} = \left(\frac{n_2 - n_1}{n_1}\right) \left(\frac{1}{k_1} - \frac{1}{k_2}\right) & 1^{l_2} \\
 ii. Formula & l_2 \\
 Calculation and result & 1^{l_2}
 \end{array}$$

$$\begin{array}{c}
 Ray diagram showing real image formation as per prescription \\
 \theta_1 = \alpha + \beta \\
 \theta_2 = \beta \cdot \gamma & \therefore \gamma = \beta - \theta
\end{array}$$
For paraxial rays 0₁ and 0₂ are small
Therefore, n_2 sin 0₂ = n_1 sin 0₂ (Snells law)
Reduces to $At N \frac{Sint}{Sinr} \frac{i}{r} = \frac{n_2}{n_1}$

$$\therefore n_1 = rXn_2$$

$$(\alpha + \beta)n_1 = (\beta - \theta)n_2$$

$$n_1 \left(\frac{1}{-u} + \frac{1}{+R}\right) = \left(\frac{1}{+R} - \frac{1}{u}\right)n_2$$

$$\begin{array}{c}
 n_1 \left(\frac{n_1}{-u} + \frac{1}{-R}\right) = \left(\frac{1}{+R} - \frac{1}{u}\right)n_2$$

$$n_2$$

$$\begin{array}{c}
 N_2
\end{array}$$

$ \begin{array}{c} n_{1} \\ n_{2} \\ \hline \\ n_{2} \\ \hline \\ I \\ I$	1/2	
For surface 1 $\frac{n_2 - n_1}{R_1} = \frac{n_2}{v'} - \frac{n_1}{u}$ (<i>i</i>)		
For surface 2		
$\frac{n_1 - n_2}{R_2} = \frac{n_1}{v} - \frac{n_2}{v'} \qquad(ii)$ Adding eqn. (i) and (ii)	1⁄2	
$(n_2 - n_1) \left(\frac{1}{R_1} - \frac{1}{R_2}\right) = n_1 \left(\frac{1}{v} - \frac{1}{u}\right)$		
For u=∝ v=f		
$\therefore \frac{n_1}{f} = (n_2 - n_1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$		
$\Longrightarrow \frac{1}{f} = \left(\frac{n_2}{n_1} - 1\right) \left(\frac{1}{R_1} - \frac{1}{R_2}\right)$	1⁄2	
(iii) R = 20 cm n_2 = 1.5 n_1 = 1 u = -100 cm		
$\frac{n_2}{v} = \frac{(n_2 - n_1)}{R} + \frac{n_1}{u}$	1⁄2	
$=\frac{0.5}{20cm}-\frac{1}{100cm}$		
$=\frac{1.5}{100}$ cm		
$\Rightarrow V = 100 cm$ a real image on the other side, 100 cm away from the	1/2	5
or o		
i.Labelled ray diagram of Astronomical Telescope 1 ¹ / ₂		
Definition of magnifying Prism1ii. Identification of lenses1/2+1/2		
a.Justification $\frac{1}{2}+\frac{1}{2}$ Reason $\frac{1}{2}$		<u> </u>

Inside $\overrightarrow{E} = \overrightarrow{E_1} + \overrightarrow{E_2}$		
$=\frac{\sigma+\sigma}{2E_0}=\frac{\sigma}{E_0}$		
Outside $\overrightarrow{E} = \overrightarrow{E_2} - \overrightarrow{E_1}$		
$=\frac{\sigma-\sigma}{2\epsilon_0} = 0$ b. Potential difference between plates	1/2	
$V = Ed = \frac{1}{\epsilon_o} \frac{Qd}{A}$	¹ / ₂ + ¹ / ₂	
c. Capacitance $C = \frac{Q}{V} = \frac{\epsilon_0 A}{d}$	¹ / ₂ + ¹ / ₂	
ii. As potential on and inside a charged sphere is given $V = \frac{1}{4\pi\epsilon_0} \frac{q}{r} = \frac{1}{4\pi\epsilon_0} \cdot \frac{4\pi r^2 \sigma}{r}$	1/2	
:, $V \propto r$ Hence, the bigger sphere will be at higher potential, so charge will flow from bigger sphere to smaller sphere.	1⁄2	5