\begin{tabular}{|c|c|c|c|}
\hline Q. No. \& Expected Answer / Value Points \& Marks \& Total Marks \\
\hline \& SECTION-A \& \& \\
\hline \[
\begin{aligned}
\& \hline \text { SET1,Q1 } \\
\& \text { SET2,Q4 } \\
\& \text { SET3,Q5 }
\end{aligned}
\] \& No work is done /
\[
\mathrm{W}=\mathrm{qV}_{\mathrm{AB}}=\mathrm{q} \times 0=0
\] \& 1 \& 1 \\
\hline SET1,Q2 SET2,Q1 SET3,Q3 \& A diamagnetic specimen would move towards the weaker region of the field while a paramagnetic specimen would move towards the stronger region./ A diamagnetic specimen is repelled by a magnet while a paramagnetic specimen moves towards the magnet./ The paramagnetic get aligned along \(B\) and the diagrammatic perpendicular to the field. \& 1 \& 1 \\
\hline \[
\begin{aligned}
\& \hline \text { SET1,Q3 } \\
\& \text { SET2,Q5 } \\
\& \text { SET3,Q2 } \\
\& \hline
\end{aligned}
\] \& Transmitter, Medium or Channel and Receiver. \& 1 \& 1 \\
\hline SET1,Q4
SET2,Q3
SET3,Q1 . \& It is due to least scattering of red light as it has the longest wavelength/ As per Rayleigh's scattering, the amount of light scattered \(\propto \frac{\mathbf{1}}{\lambda^{4}}\) \& 1 \& 1 \\
\hline \[
\begin{aligned}
\& \text { SET1,Q5 } \\
\& \text { SET2,Q2 } \\
\& \text { SET3,Q4 }
\end{aligned}
\] \& \[
\mathrm{E}=2 \mathrm{~V}
\]
\[
r=2 \Omega
\] \& \[
\begin{aligned}
\& 1 / 2 \\
\& 1 / 2
\end{aligned}
\] \& 1 \\
\hline \& SECTION B \& \& \\
\hline \[
\begin{aligned}
\& \hline \text { SET1,Q6 } \\
\& \text { SET2,Q9 } \\
\& \text { SET3,Q8. }
\end{aligned}
\] \& \begin{tabular}{l}
\begin{tabular}{|lc|}
\hline Definition- \& 1 \\
Reason- \& \(1 / 2\) \\
Role of bandpass filter- \& \(1 / 2\) \\
\hline
\end{tabular} \\
Modulation index is the ratio of the amplitude of modulating signal to that of carrier wave \\
Alternatively \(\mu=A_{m} / A_{c}\) \\
Reason- \\
To avoid distortion. \\
Role- \\
A bandpass filter rejects low and high frequencies and allows a band of frequencies to pass through.
\end{tabular} \& 1

$1 / 2$
$1 / 2$
$1 / 2$ \& 2 \\
\hline
\end{tabular}

| | | | |
| :--- | :---: | :--- | :--- | :--- |
| SET1,Q7
 SET2,Q10
 SET3,Q6 | Path of emergent ray
 Naming the face
 Justification | | |

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
E_{o}=\frac{m e^{4}}{8 \in_{o}{ }^{2} h^{2}} i . e, . E_{o} \propto m
\] \\
Therefore, Ionization Energy will become 200 times \\
OR
\[
\frac{1}{\lambda}=R\left(\frac{1}{2^{2}}-\frac{1}{\propto^{2}}\right)
\] \\
For shortest wavelength, \(\mathrm{n}=\alpha\) \\
Therefore,,\(\frac{1}{\lambda}=\frac{R}{4}=>\lambda=\frac{4}{R}=4 \times 10^{-7} \mathrm{~m}\)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)

1
1
$11 / 2$
$1 / 2$ \& 2 \\

\hline \[
$$
\begin{aligned}
& \hline \text { SET1,Q10 } \\
& \text { SET2,Q7 } \\
& \text { SET3,Q9 }
\end{aligned}
$$

\] \& | a) Relation for terminal potential
 b) Justification $1 / 2$
 c) Explanation (parallel and series) $11 / 2$ |
| :--- |
| a) Effective resistance of the circuit $\mathrm{R}_{\mathrm{E}}=6 \Omega$ $\therefore I=\frac{12 A}{6}=2 A$ |
| Terminal potential difference across the cell, V=E-ir |
| Also p.d. across 4Ω resistor $=4 \mathrm{X} 2 \mathrm{~V}=8 \mathrm{~V}$ Hence the volmeter gives the same reading in the two cases. |
| b) In series -current same In parallel - potential same | \& $1 / 2$

$1 / 2$

$1 / 2$
$1 / 2$ \& 2 \\
\hline \& SECTION C \& \& \\

\hline \[
$$
\begin{array}{|l}
\hline \text { SET1,Q11 } \\
\text { SET2,Q15 } \\
\text { SET3,Q22 }
\end{array}
$$

\] \& | Definition- $1 / 2$
 i.Diagram of Equipotential Surface $1 / 2$
 ii.Diagram and reason $1 / 2+1 / 2$
 iii.Answer and Reason $1 / 2+1 / 2$ |
| :--- |
| Surface with a constant value of potential at all points on the surface. | \& $1 / 2$ \& \\

\hline
\end{tabular}

	i. ii. $\mathrm{V} \propto \frac{1}{r} /$ iii.No If the field lines are tangential, work will be done in moving a charge on the surface which goes against the definition of equipotential surface.	1/2	3
$\begin{aligned} & \hline \text { SET1,Q12 } \\ & \text { SET2,Q14 } \\ & \text { SET3,Q12 } \end{aligned}$	Statement 1 Plotting the graph 1 Calculating value of (μ) refractive index 1 i. When the pass axis of a poloroid makes an angle θ with the plane of polarisation of polorised light of intensity I_{o} incident on it, then the intensity of the tramsmitted emergent light is given by $\mathrm{I}=I_{0} \cos ^{2} \theta$ Note: If the student writes the formula $I=I_{0} \cos ^{2} \theta$ and draws the	1	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
diagram give 1mark. \\
i.
\[
\text { iii. } \begin{aligned}
\mu \& =\tan i_{\beta} \\
\& =\tan 60^{\circ}=\sqrt{3}=1.7
\end{aligned}
\]
\end{tabular} \& 1 \& 3 \\
\hline \[
\begin{aligned}
\& \text { SET1,Q13 } \\
\& \text { SET2,Q13 } \\
\& \text { SET3,Q14 }
\end{aligned}
\] \& \begin{tabular}{l}
\begin{tabular}{|lc|}
\hline Sketch of the Graph \& 1 \\
(i) Stopping Potential and Reason \& \(1 / 2+1 / 2\) \\
\& \(1 / 2+1 / 2\) \\
(ii) Dependence of Slope and Explanation \& \\
\hline
\end{tabular}
 \\
(i) For material B \\
From the graph for the same value of ' \(v\) ', stopping potential is more for material ' \(B\) '/ \(\left[V_{0=\frac{h}{e}}\left(v-v_{0}\right)\right.\) \\
\(\therefore, \boldsymbol{V}_{0}\) is higher for lower value of \(\boldsymbol{v}_{0}\)] \\
(ii) No \\
As slope is given by \(\frac{h}{e}\) which is constant.
\end{tabular} \& 1

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3 \\
\hline
\end{tabular}

$\begin{aligned} & \hline \text { SET1,Q14 } \\ & \text { SET2,Q12 } \\ & \text { SET3,Q19 } \end{aligned}$	(a) Basic nuclear process (b) (i) value of x, y, z (ii) value of a, b, c a. Basic nuclear reaction $P \rightarrow n+e^{+}+v$ b.(i) $x=\beta^{+} /{ }_{1}^{0} e, \mathrm{y}=5, \mathrm{z}=11$ (ii) $\mathrm{a}=10, \mathrm{~b}=2, \mathrm{c}=4$	1 $\begin{aligned} & 1 \\ & 1 \end{aligned}$	3
$\begin{aligned} & \hline \text { SET1,Q15 } \\ & \text { SET2,Q11 } \\ & \text { SET3,Q21 } \end{aligned}$	(i) Relation for drift velocity (ii) Effect of temperature i. When a potential difference is applied across a conductor, an electric field is produced and free electrons are acted upon by an electric force (=-Ee). Due to this, electrons accelerate and keep colliding with each other and acquire a constant (average) velocity $\boldsymbol{v}_{\boldsymbol{d}}$ $\begin{aligned} & \therefore, F_{e}=-E e \\ & \therefore, F_{e}=\frac{-e V}{l} \end{aligned}$ As $\mathrm{a}=\frac{-F}{m}=\frac{-e \mathrm{~V}}{m}$ as $v=u+a t$ $\mathrm{u}=0, \mathrm{t}=\tau$ (relaxation time) $v_{d}=-\mathrm{a} \tau$ $v_{d}=\frac{-e V}{l m} \tau$ ii. Decreases, as time of relaxation decreases.	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2,1 / 2$	3
$\begin{aligned} & \hline \text { SET1,Q16 } \\ & \text { SET2,Q22 } \\ & \text { SET3,Q15 } \end{aligned}$	Proof for average power Effect on brightness Explanation $11 / 2$ $1 / 2$		

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
i) \(P_{a v}=I_{a v} \times e_{a v} \cos \emptyset\) \\
For an ideal inductor, \(\phi=\frac{\pi}{2}\)
\[
\begin{aligned}
\therefore P_{a v} \& =l_{a v} \times e_{a v} \cos \frac{\pi}{2} \\
\& P_{a v}
\end{aligned}=0
\] \\
ii) Brightness decreases \\
Because as iron rod is inserted inductance increases. Thus, current decreases and brightness decreases.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$
$1 / 2$ \& 3 \\

\hline \[
$$
\begin{aligned}
& \text { SET1,Q17 } \\
& \text { SET2,Q21 } \\
& \text { SET3,Q16 }
\end{aligned}
$$

\] \& | i.Diagram of Formation $1 / 2$
 Explanation of formation of $1 / 2$
 Depletion region $1 / 2$
 Barrier potential $1 / 2$
 ii.Circuit diagram of Half wave rectifier 1
 Explanation |
| :--- |
| i.Due to diffusion and drift, the electrons and holes move across the junctions, creating a final stage in which a region is created across the junction wall, which gets devoid of the mobile charge carriers. This region is called depletion region; the potential difference across the region is called Barriers potential | \& $1 / 2$

$$
1 / 2+1 / 2
$$ \& \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
(a) \\
Working- If an alternating voltage is applied across a diode in series with a load, a pulsating voltage will appear across the load only during that half cycle of the ac input during which the diode is forward biased. \\
Therefore, in the positive half - cycle of ac input there is a current through the load resistor \(\mathrm{R}_{\mathrm{L}}\) and we get an output voltage whereas half - cycle. There is no output during the negative half cycle. Thus, the output voltage is restricted to only one direction and is said to be rectified. \\
[Note-If the student draws only the input and output wave form, then award \(1 / 2\) marks only]
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$
$1 / 2$ \& 3 \\

\hline \[
$$
\begin{aligned}
& \text { SET1,Q18 } \\
& \text { SET2,Q20 } \\
& \text { SET3,Q13 }
\end{aligned}
$$

\] \& | a) Mode of propagation
 Labeled diagram
 Explanation $1 / 2$
 b) Reason $1 / 2$ |
| :--- |
| a) Sky wave propagation |
| Long distance communication can be achieved by reflection of radio waves by the ionosphere, back towards the Earth. This ionosphere layer acts as a reflector only for a certain range of frequencies.(fewMHz to 30 MHz) |
| b) Electromagnetic waves of frequencies higher than 30 MHz , penetrate the ionosphere and escape whereas the waves less than 30 MHz are | \& 1/2 \& 3 \\

\hline
\end{tabular}

	reflected back to the earth by the ionosphere.		
SET1,Q19 SET2,Q19 SET3,Q17	i. Identification $1+1$ ii. Momentary deflection of galvanometer Reason $1 / 2$ Expressions $1 / 2$ i. a. Microwaves b. X-rays ii Due to conduction current in the connecting wires and a displacement current between the plates $I_{d}=\epsilon_{0} \frac{d \emptyset_{E}}{d t}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	3
$\begin{aligned} & \text { SET1,Q20 } \\ & \text { SET2,Q18 } \\ & \text { SET3,Q11 } \end{aligned}$	i. Collection current ii. Base Current iii. Base voltage i. Input signal Voltage AC Collector Current- $\dot{i}_{c}=\frac{V_{c e}}{R_{c}}=1.0 \mathrm{~mA}$ Base Current- $\boldsymbol{i}_{b}=\frac{i_{c}}{\beta}=\frac{1.0 \mathrm{~mA}}{100}=0.01 \mathrm{~mA}$ Base signal Voltage $=i_{b} \mathrm{R}=0.01 \mathrm{~mA} \times 1 \mathrm{k} \Omega=10 \mathrm{mv}$	$\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$	3

SET1,Q21		
SET2,Q17	Definition- wave front	1
SET3,Q18	Statement- Huygen's Principle	1
	Labelled diagram	1

Definition- Locus of all points which oscillate in phase.
i. Huygen's Principle- Each point of the wave front is the source of a secondary disturbance and the wavelets emanating from these points spread out in all directions. These travel with the same velocity as that of the original wave front.
ii. The shape and position of the wave front, after time ' t ', is given by the tangential envelope to the secondary wavelets.

OR

i. Reason for no change in frequency after reflection and the refraction of light- $1 / 2+1 / 2$
ii. Reduction in Energy
iii. Factors determining the intensity of light

1
i. Reflection and refraction arise through interaction of incident light with atomic constituents of matter which vibrate with the same frequency as that of the incident light. Hence frequency remains unchanged.
ii.No. [Energy carried by a wave depends on the amplitude of the wave, not on the speed of wave propagation].
iii.For a given frequency, intensity of light in the photon picture is
(1/2

Ray diagram showing real image formation as per prescription
$\theta_{1}=\alpha+\beta$
$\theta_{2}=\beta-\gamma \quad \therefore \gamma=\beta-\theta$
For paraxial rays θ_{1} and θ_{2} are small
Therefore, $\mathrm{n}_{2} \sin \theta_{2}=\mathrm{n}_{1} \sin \theta_{2}$ (Snells law)
Reduces to
At $\mathrm{N} \frac{\operatorname{Sini} i}{\operatorname{Sinr} r} \sim \frac{i}{r}=\frac{n_{2}}{n_{1}}$
$\therefore n_{1}=r X n_{2}$
$(\alpha+\beta) n_{1}=(\beta-\theta) n_{2}$
$n_{1}\left(\frac{N M}{O M}+\frac{N M}{M C}\right)=\left(\frac{N M}{M C}-\frac{N M}{M I}\right) n_{2}$
$n_{1}\left(\frac{1}{-u}+\frac{1}{+R}\right)=\left(\frac{1}{+R}-\frac{1}{u}\right) n_{2}$
$\frac{n_{2}}{v^{\prime}}-\frac{n_{1}}{u}=\frac{\left(n_{2}-n_{1}\right)}{R_{1}}$

For surface 1

$$
\begin{equation*}
\frac{n_{2}-n_{1}}{R_{1}}=\frac{n_{2}}{v^{\prime}}-\frac{n_{1}}{u} \tag{i}
\end{equation*}
$$

For surface 2

$$
\begin{equation*}
\frac{n_{1}-n_{2}}{R_{2}}=\frac{n_{1}}{v}-\frac{n_{2}}{v^{\prime}} \tag{ii}
\end{equation*}
$$

Adding eqn. (i) and (ii)
$\left(n_{2}-n_{1}\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)=n_{1}\left(\frac{1}{v}-\frac{1}{u}\right)$

For $u=\propto \quad v=f$

$$
\begin{aligned}
& \therefore \frac{n_{1}}{f}=\left(n_{2}-n_{1}\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right) \\
& \Rightarrow \frac{1}{f}=\left(\frac{n_{2}}{n_{1}}-1\right)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)
\end{aligned}
$$

(iii) $R=20 \mathrm{~cm} \quad n_{2}=1.5 \quad n_{1}=1 \quad u=-100 \mathrm{~cm}$

$$
\begin{aligned}
& \frac{n_{2}}{v}=\frac{\left(n_{2}-n_{1}\right)}{R}+\frac{n_{1}}{u} \\
& =\frac{0.5}{20 \mathrm{~cm}}-\frac{1}{100 \mathrm{~cm}} \\
& =\frac{1.5}{100} \mathrm{~cm}
\end{aligned}
$$

$\Rightarrow V=100 \mathrm{~cm}$ a real image on the other side, 100 cm away from the surface.

OR

i.Labelled ray diagram of Astronomical Telescope

Definition of magnifying Prism
ii. Identification of lenses
a.

Justification
Reason

Definition-lt is the ratio of the angle subtended at the eye, by the final image, to the angle which the object subtends at the lens, or the eye.
b.
i.Objective=.5D

Eye lens = 10D
This choice would give higher magnification as

$$
\mathrm{M}=\frac{f_{0}}{f_{e}}=\frac{P_{e}}{P_{o}}
$$

ii. High resolving power/ Brighter image / lower limit of resolution(any one)

