MARKING SCHEME

\begin{tabular}{|c|c|c|c|}
\hline Q. No. \& Expected Answer / Value Points \& Marks \& Total Marks \\
\hline \[
\begin{aligned}
\& \hline \text { Set1,Q1 } \\
\& \text { Set2,Q2 } \\
\& \text { Set3,Q4 } \\
\& \hline
\end{aligned}
\] \& Zero / No work done / None SECTION A \& 1 \& 1 \\
\hline \[
\begin{aligned}
\& \hline \text { Set1,Q2 } \\
\& \text { Set2,Q5 } \\
\& \text { Set3,Q3 }
\end{aligned}
\] \& \begin{tabular}{l}
Drift velocity per unit field \(\left(\mu_{m}=v_{d}\right)\)
\[
\mu_{n} \propto \tau
\] \\
(directly proportional to relaxation time)
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2 \\
\& 1 / 2
\end{aligned}
\] \& 1 \\
\hline Set1,Q3 Set2,Q4 Set3,Q2 \& Charged particle moves inclined to the magnetic field (angle between \(\vec{\vartheta}\) and \(\vec{B}\) is neither \(\pi / 2\) nor 0) (component of \(\vec{\vartheta}\), parallel to \(\vec{B}\), is not zero.) \& 1 \& 1 \\
\hline \[
\begin{aligned}
\& \hline \text { Set1,Q4 } \\
\& \text { Set2,Q1 } \\
\& \text { Set3,Q5 } \\
\& \hline
\end{aligned}
\] \& (some) light gets deviated / scattered / absorbed Scattering of light \& \[
\begin{aligned}
\& \hline 1 / 2 \\
\& 1 / 2
\end{aligned}
\] \& 1 \\
\hline \[
\begin{aligned}
\& \hline \text { Set1,Q5 } \\
\& \text { Set2,Q3 } \\
\& \text { Set3,Q1 }
\end{aligned}
\] \& \begin{tabular}{l}
\[
\begin{aligned}
\& v_{\text {side bands }}=v_{c} \pm v_{m} \\
\& =2005 \mathrm{kHz} ; 1995 \mathrm{kHz}
\end{aligned}
\] \\
(Give full 1 mark if the student straightaway writes the answer as 2005 kHz and 1995 kHz)
\end{tabular} \& \[
\begin{aligned}
\& 1 / 2 \\
\& 1 / 2
\end{aligned}
\] \& 1 \\
\hline Set1,Q6 Set2,Q8 Set3,Q7 \& \begin{tabular}{l}
SECTION B
\[
\begin{aligned}
\& R=\rho \frac{l}{A} ; I=n e A v_{d} \\
\& \therefore \rho=\frac{V}{n e l v_{d}}
\end{aligned}
\] \\
Alternatively,
\[
\binom{j=\sigma E=\frac{E}{\rho} \text { or } \frac{E}{j}=\rho}{\therefore \rho=\frac{V}{\operatorname{lnev}_{d}}}
\] \\
(Award this 1 mark even if the student writes the formula for \(\rho\) directly as such)
\[
\begin{aligned}
\& \therefore \rho=\frac{5}{0.1 \times 8 \times 10^{28} \times 1.6 \times 10^{-19} \times 2.5 \times 10^{-4}} \Omega-m \\
\&=1.56 \times 10^{-5} \Omega-m \\
\& \simeq 1.6 \times 10^{-5} \Omega-m
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$ \& 2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline Set1,Q7
Set2,Q10 Set3,Q8 \& \begin{tabular}{l}
Formulae
\[
1 / 2+1 / 2
\] \\
Conclusions in the two cases
\[
1 / 2+1 / 2
\] \\
(i) \(\lambda=\frac{h}{p}=\frac{h}{\sqrt{2 m q V}}\) \\
\(\because(m q)\) is more for \(\alpha\) - particle, we have \\
\(\lambda_{\text {proton }}>\lambda_{\alpha-\text { particle }}\) \\
(Also, accept if the student writes \(\frac{\lambda_{\text {proton }}}{\lambda_{\alpha}}=2 \sqrt{2}(\) or \(\sqrt{8})\) \\
(ii) K.E. \(=\mathrm{q} V\) \\
\(\because \mathrm{q}\) is less for proton, we have \\
\((K . E)_{\text {proton }}<(K . E)_{\alpha-\text { particle }}\) \\
(Also accept if the student writes \(\frac{(\text { K.E. })_{\alpha}}{(\text { K.E. })_{\rho}}=2\))
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$
$1 / 2$ \& 2

\hline \[
$$
\begin{aligned}
& \hline \text { Set1,Q8 } \\
& \text { Set2,Q9 } \\
& \text { Set3,Q6 }
\end{aligned}
$$

\] \& | Indicating the transition 1
 Calculation of frequency 1 |
| :--- |
| When the electron jumps from the orbit with $n=3$ to $n=2$ |
| (Longest wavelength of the Balmer series / First line of the Balmer series) $\begin{aligned} & h \vartheta=E_{3}-E_{2}=\frac{E_{1}}{9}-\frac{E_{1}}{4} \\ &=\frac{-5}{36} E_{1}=\frac{-5}{36} \times(-13.6 \mathrm{eV}) \\ &=\frac{5}{36} \times 13.6 \times 1.6 \times 10^{-19} \mathrm{~J} \\ & \therefore \vartheta=\frac{5 \times 13.6 \times 1.6 \times 10^{-19}}{36 \times 6.63 \times 10^{-34}} \mathrm{~Hz} \\ & \simeq 4.57 \times 10^{14} \mathrm{~Hz} . \end{aligned}$ |
| (If the student just writes $\vartheta=\frac{-5}{36} \frac{E_{1}}{h}$, award $1 / 2$ mark) |
| (Alternatively, $\begin{aligned} & \frac{1}{\lambda}=R\left(\frac{1}{2^{2}}-\frac{1}{3^{2}}\right)=\frac{5}{36} R \\ & \therefore \vartheta=\frac{c}{\lambda} \\ & =c \times \frac{5}{36} R \\ & =3 \times 10^{8} \times \frac{5}{36} \times 1.097 \times 10^{7} \mathrm{~Hz} \\ & \left.\simeq 4.57 \times 10^{14} \mathrm{~Hz}\right) \end{aligned}$ | \& 1

$11 / 2$

$1 / 1 / 2$

$1 / 2$
$1 / 2$

$1 / 2$ \& 2

\hline
\end{tabular}

	Formulae 1 Calculation of r 2 We have, for a single cell, $r=\left(\frac{E}{V}-1\right) R$ \therefore For the parallel combination, as given in the question, $\begin{aligned} & \frac{r}{2}=\left(\frac{E}{V}-1\right) \frac{R}{2} \\ & \therefore r=\left(\frac{1.5}{1.4}-1\right) \times 7 \Omega \\ & =\frac{0.1}{1.4} \times 7 \Omega \\ & =0.5 \Omega \end{aligned}$ (Alternatively, $I=\frac{V}{(R / 2)}$ And $E=V-I(r / 2)$ This gives $I=\frac{1.4}{7 / 2} \mathrm{~A}=0.4 \mathrm{~A}$ $\begin{aligned} & \therefore \frac{r}{2}=\frac{1.5-1.4}{0.4}=0.25 \\ & \therefore r=0.5 \Omega) \end{aligned}$ (Note: If the student just draws the circuit diagram of the setup but does not do any calculations, award 1 mark only.)	1	3

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& \therefore r=\frac{m v}{q B} \\
\& \text { Also } T=\frac{2 \pi r}{v} \\
\& \therefore T=\frac{2 \pi m}{q B}
\end{aligned}
\] \\
\(\therefore T\) is independent of \(v\), the speed of the charged particles. \\
This property ensures that if the frequency of the applied alternating electric field matches the cyclotron frequency, the particle whould keep on getting accelerated every time it crosses the gap between the dees. \\
(Alternatively : Because of the property, the applied alternating electric field can be made to accelerate the charged particles continuously. \\
This property ensures that the resonance condition can be satisfied and the particle gets accelerated continously. \\
This property ensures that we can have \(\vartheta=\vartheta_{c}\), the resonance condition.)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$ \& 3

\hline \[
$$
\begin{array}{|l|}
\hline \text { Set1,Q14 } \\
\text { Set2,Q14 } \\
\text { Set3,Q19 }
\end{array}
$$

\] \& | Showing that the average power, over a complete cycle is zero 2 Effect on brightness of bulb |
| :--- |
| (i) Let the applied voltage be $V=V_{0} \sin \omega t$ |
| The current through an ideal capacitor, would then be $\begin{aligned} & \quad I=I_{0} \sin \left(\omega t+\frac{\pi}{2}\right)=I_{0} \cos \omega t \\ & \therefore P_{\text {inst }}=V I \\ & \therefore P_{A V}=\frac{1}{T} \int_{0}^{T} V I d t \\ & \therefore P_{A V}=\frac{V_{0} I_{0}}{2}\langle\sin 2 \omega t\rangle \\ & \quad=0 \end{aligned}$ |
| (Alternatively , |
| For an ideal capacitor, the current leads voltage in phase by $\pi / 2$. $\begin{aligned} & \therefore P=\frac{E_{0}}{\sqrt{2}} \frac{I_{0}}{\sqrt{2}} \cos \emptyset=\frac{E_{0} I_{0}}{2} \cos \frac{\pi}{2} \\ & =0) \end{aligned}$ |
| (ii) The brightness of the bulb would also reduce gradually. |
| (Alternatively: $X_{c}=\frac{1}{\omega C}$ |
| $\therefore X_{c}$ increases as C decreases.Hence, with decreasing C , the brightness of the bulb would decrease.) | \& $1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$

$1 / 2$ \& 3

\hline
\end{tabular}

$\begin{aligned} & \hline \text { Set1,Q15 } \\ & \text { Set2,Q22 } \\ & \text { Set3,Q18 } \end{aligned}$	Production of e.m. waves $1 / 2$ Source of energy $1 / 2$ Expressions for electric and magnetic fields $1 / 2+1 / 2$ Any two properties $1 / 2+1 / 2$ ε.M. waves are produced by accelerated /oscillating charges. Source of energy is the source that accelerates the charges Expression for the electric and magnetic fields (for an e.m. wave propagating along the z - axis) can be $\begin{aligned} & E_{x}=E_{0} \sin (k z-w t) \\ & B_{y}=B_{0} \sin (k z-w t) \end{aligned}$ Properties (any two) (i) Transverse nature (ii) Have a definite speed (for all frequencies) in vaccum (iii) Can be polarized (iv) Can show the phenomenon of interference and diffraction (v) Can transport energy from one point to another (vi) Have oscillating electric and magnetic fields along mutually perpendicular directions (vii) Have a momentum associated with them. (viii) Their speed, in a medium, depends upon the values of μ and ε for that medium.	$1 / 2+1 / 2$	3
	(i) Derivation of Snell's law (ii) Sketches to differentiate between plane wavefront and spherical wavefront (i) We have $\mathrm{BC}=\vartheta_{1} \tau$ and $A E=\vartheta_{2} \tau$ Also $\sin i=\frac{B C}{A C}$ and $\sin r=\frac{A E}{A C}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	

	$\therefore \frac{\sin i}{\sin r}=\frac{B C}{A E}=\frac{\vartheta_{1}}{\vartheta_{2}}=\frac{n_{2}}{n_{1}}$ = a constant This is Snell's law. (ii) Plane wavefront Spherical wavefront	$1 / 2$ $1 / 2$ $1 / 2$	3
$\begin{array}{\|l\|} \hline \text { Set1,Q17 } \\ \text { Set2,Q11 } \\ \text { Set3,Q16 } \end{array}$	Two properties of Photon $1 / 2+1 / 2$ Writing Einstein's equation $1 / 2$ Definition of stopping potential $\left(V_{0}\right)$ $1 / 2$ Definition of Threshold frequency $\left(v_{0}\right)$ $1 / 2$ Plot between V_{0} and v $1 / 2$ Properties of Photon (i) For a radiation of frequency v, each photon has an energy, $E=h v$, associated with it (ii) The energy of a photon is independent of the intensity of incident radiation. (iii)During the collision of a photon, with an electron, the total energy of the photon gets absorbed by the electron. (Any two) Einstein's photoelectric equation is $K_{\max }=h v-\phi_{0}$ or $e V_{0}=h v-\phi_{0}$ (a) Stopping potoential, V_{0}, equals that value of the negative potential for which $\left\|e V_{0}\right\|=K_{\max }$	$1 / 2+1 / 2$ $1 / 2$ $1 / 2$	

	(Alternatively: The stopping potential $\left(V_{0}\right)$ equals that (least) value of the (negative) plate potential that just stops the most energetic emitted photoelectrons from reaching the plate.) (b) Threshold frequency $\left(\vartheta_{0}\right)$ equals that value of the frequency of incident radiation for which $K_{\max }=0$. (Alternatively: For a given photosensitive surface, its threshold frequency is the minimum value of the frequency of incident radiation for which photoelectrons can be just emitted from that surface or that maximum frequency of incident radiation below which no photo emission takes place.) The plot, between V_{0} and ϑ, has the form shown:	1/2	3
$\begin{array}{\|l\|l\|} \hline \text { Set1,Q18 } \\ \text { Set2,Q20 } \\ \text { Set3,Q15 } \end{array}$	(i) Naming the two processes $1 / 2+1 / 2$ (ii) Circuit diagram 1 Input and output waveforms $1 / 2$ Unidirectional nature of output voltage/current $1 / 2$ (i) Diffusion and Drift [Also accept if the student writes a) Appearance of a BARRIER POTENTIAL across the junction. b) Formation of a DEPLETION REGION on either side of the junction.] (ii) Circuit diagram	$1 / 2+1 / 2$	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
Input and Output waveforms. \\
[Note: Award this \(1 / 2\) mark even if the student draws the output waveform only.] \\
Because of (i) the use of the centre tap transformer and (ii) the manner in which the load is connected, the voltage across/current through, the load has the same direction during both halfs of the input wave.
\end{tabular} \& \(1 / 2\)

$1 / 2$ \& 3

\hline Set1,Q19 Set2,Q12 Set3,Q14 \& \& $1 / 2$ \&

\hline
\end{tabular}

	$\begin{aligned} & \ln N=-\lambda t+\ln N_{0} \\ & \text { or } \ln \left(\frac{N}{N_{0}}\right)=-\lambda t \\ & \therefore N=N_{0} e^{-\lambda t} \end{aligned}$ (ii) Mean life $=\frac{1}{\text { decay constant }}$ (Alternatively, $\tau=\frac{1}{\lambda}$)	$1 / 2$ $1 / 2$	3
$\begin{array}{\|l\|} \hline \text { Set1,Q22 } \\ \text { Set2,Q16 } \\ \text { Set3,Q11 } \end{array}$	(i) Calculating the focal length of the lens (ii) Calculating the focal length of the combination 1 (i) For first position of the lens, we have $\frac{1}{f}=\frac{1}{y}-\frac{1}{(-x)}$ For second position of the lens, we have $\begin{aligned} & \frac{1}{f}=\frac{1}{y-20}-\frac{1}{(-(x+20))} \\ & \frac{1}{y}+\frac{1}{x}=\frac{1}{(y-20)}+\frac{1}{(x+20)} \\ & \frac{x+y}{x y}=\frac{(x+20)+(y-20)}{(y-20)(x+20)} \\ & \begin{aligned} & \therefore x y=(y-20)(x+20) \\ &=x y-20 x+20 y-400 \\ & \quad \therefore x-y=-20 \end{aligned} \end{aligned}$ Also , $\mathrm{x}+\mathrm{y}=100$ $\therefore \mathrm{x}=40 \mathrm{~cm}$ $\text { and } \mathrm{y}=60 \mathrm{~cm}$ $\begin{aligned} & \therefore \frac{1}{f}=\frac{1}{60}-\frac{1}{-40}=\frac{2+3}{120}=\frac{5}{120} \\ & \therefore f=24 \mathrm{~cm} \end{aligned}$	1/2	

```
Alternatively ,
We have
\(f=\frac{D^{2}-d^{2}}{4 D}\)
    \(=\frac{100^{2}-20^{2}}{4 \times 100}\)
    \(=\frac{120 \times 80}{400}\)
    \(=24 \mathrm{~cm}\)
```


Alternatively,

For the two positions of the lens, the values of the magnitudes of u and v, get interchanged.

Hence, $|u+v|=100$

$$
|u-v|=20, \text { This gives }|u|=60 \quad|v|=40
$$

$$
\therefore f=24 \mathrm{~cm}
$$

Alternatively ,

$2 x+20=100$
$\therefore x=40 \mathrm{~cm}$

For lens at position $\mathrm{L}_{1} ; \mathrm{u}=-\boldsymbol{x}=-40 \mathrm{~cm}$

$$
\mathrm{v}=20+40=60 \mathrm{~cm}
$$

This gives $\mathrm{f}=24 \mathrm{~cm}$
(i) For combination of two lenses in contact .

Net Power of combination ,
$\mathrm{P}=\mathrm{P}_{1}+\mathrm{P}_{2}$
$\mathrm{P}_{1=+} \mathrm{P}, \mathrm{P}_{2}=-\mathrm{P}$
So $\mathrm{P}=0$ and $\mathrm{F}=$ infinite
Alternatively,$\frac{1}{F}=\frac{1}{f_{1}}+\frac{1}{f_{2}}$

	$\begin{aligned} & \quad=\frac{1}{f}+\left(\frac{-1}{f}\right)=0 \\ & \mathrm{~F}=\text { infinite } \end{aligned}$	1/2	
$\begin{array}{\|l} \hline \text { Set1,Q23 } \\ \text { Set2,Q23 } \\ \text { Set3,Q23 } \end{array}$	(a) Values displayed $1 / 2+1 / 2+1 / 2$ (b) Possible reason $1 / 2$ (c) Formula for force $1 / 2$ Max. value 1 Min. value $1 / 2$ a) Value displayed by Seema : Helpful, considerate Family: Concerned, Affectionate Doctor: Humane nature (any one in all three cases) b) Expensive machinery/technique c) $\begin{aligned} & F=q v B \sin \theta \\ & \begin{aligned} & F F_{\max } \\ & \quad=q v B=1.6 \times 10^{-19} \times 10^{4} \times 0.1 \\ &=1.6 \times 10^{-16} \mathrm{~N} \end{aligned} \\ & F_{\min }=\text { zero } \quad\left(\text { for } \theta=0^{0}\right) \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$ $1 / 2$ $1 / 2$ 1 $1 / 2$	4
$\begin{array}{\|l} \text { Set1,Q24 } \\ \text { Set2,Q25 } \\ \text { Set3,Q26 } \end{array}$	SECTION E a) Difference between the behaviours of the two $(1 / 2+1 / 2)$ Modification of electric field. 1 b) (i) Charge stored + justification $1 / 2+1 / 2$ (ii) field strength + justification $1 / 2+1 / 2$ (iii) energy stored + justification $1 / 2+1 / 2$ a) No electric field inside a conductor . (Give full credit to diagram. Give $1 / 2$ mark if explanation only is given without	$1 / 2+1 / 2$	

\begin{tabular}{|c|c|c|c|}
\hline \& \[
\begin{aligned}
\& =\frac{-1}{4 \pi \epsilon_{0}}\left[\frac{(-4 q)(q)}{a}+\frac{(2 q)(q)}{a}+\frac{(-4 q)(2 q)}{a}\right] \\
\& =-\frac{1}{4 \pi \epsilon_{0} a}\left[-4 q^{2}+2 q^{2}-8 q^{2}\right] \\
\& =+\left[\frac{10 q^{2}}{4 \pi \epsilon_{0} a}\right]
\end{aligned}
\] \& 1 \& 5 \\
\hline \[
\begin{array}{|l|}
\hline \text { Set1,Q25 } \\
\text { Set2,Q26 } \\
\text { Set3,Q24 }
\end{array}
\] \& \begin{tabular}{cl|}
(a) Identification of phenomenon \& \(1 / 2\) \\
Stating the factors \& \(1 / 2+1 / 2\) \\
Law \& \(1 / 2\) \\
(b) Sketch of change in \& \\
i. Flux \& 1 \\
ii. Emf \& 1 \\
iii. Force \& 1
\end{tabular} \& \& \\
\hline \& \begin{tabular}{l}
(a) The phenomenon involved is electromagnetic induction (EMI) For the deflection: \\
Amount depends upon the speed of movement of the magnet. \\
Direction depends on the sense (towards, or away) of the movement of the magnet. \\
The law describing the phenomenon is : \\
The magnitude of the induced emf, in a circuit, is equal to the time rate of change of the magnetic flux through the circuit. \\
(Note: Also accept if a student writes: whenever magnetic flux linked with a conductor changes, an induced emf is setup in the conductor.) \\
(Alternatively, \(\epsilon=-\frac{d \phi_{B}}{d t}\)) \\
(b)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

1 \& 5

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \[
\begin{aligned}
\& X_{c}=X_{L} \\
\& \tan \phi=0 \Rightarrow \phi=0^{0} \\
\& \therefore \cos \phi=1, \text { its maximum value. } \\
\& \text { Hence } \mathrm{P}(=\mathrm{VI} \cos \phi) \text { has its maximum value at resonance. }
\end{aligned}
\] \& 1/2 \& 5 \\
\hline \[
\begin{aligned}
\& \hline \text { Set1,Q26 } \\
\& \text { Set2,Q24 } \\
\& \text { Set3,Q25 }
\end{aligned}
\] \& \begin{tabular}{l}
a) Reason for variation \\
\(1 / 2\) \\
Polarisation due to scattering \\
2 \\
b) Statement for Malus' law \\
Calculation of intensities for \\
(i) \(\theta=30^{\circ}\) \\
1 \\
(ii) \(\theta=60^{\circ}\) \\
1 \\
(a) As per Malus' law, \\
Transmitted intensity \(\mathrm{I}=I_{o} \cos ^{2} \theta\) \\
\(\therefore\) The transmitted intensity will show a variation as per \(\cos ^{2} \theta\). \\
[Note: If the student writes that "unpolarised light will not show any variation in intensity, when viewed through a polaroid, which is rotated" award this \(1 / 2\) mark] \\
The electric field, of the incident wave, makes the electrons of the air molecules, acquire both components of motion. (\(\downarrow\) as well as \(\bullet\)). \\
Charges accelerating parallel to \(\mathfrak{\downarrow}\), do not radiate energy towards the observer. Hence the radiation, scattered towards the observer gets linearly polarised. \\
(Note: Award these 2 marks even if the student just draws a well labelled diagram, without giving any explanation.)
\end{tabular} \& \(1 / 2\)

1
1

$1 / 2$
$1 / 2$ \&

\hline
\end{tabular}

