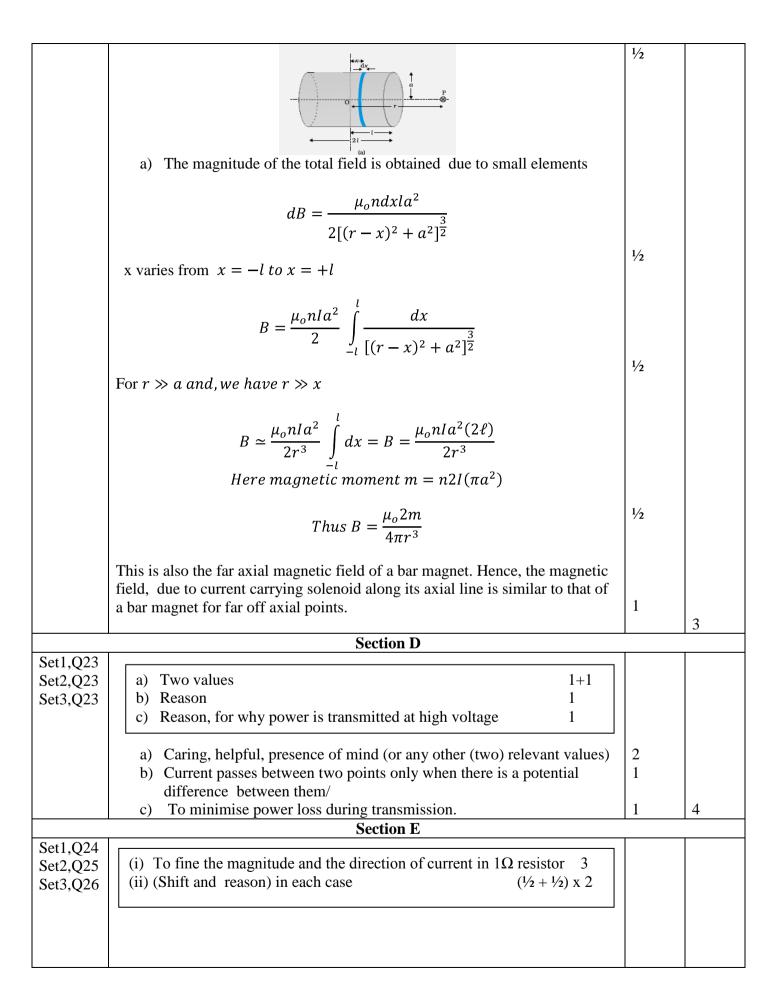
MARKING SCHEME SET 55/1/S

Q. No.	Expected Answer / Value Points	Marks	Total Marks
	Section A	1	1
Set1,Q1	(i) Manganin	1/2	
Set2,Q3	al.		
Set3,Q2	(ii) $R = \frac{\rho l}{A}$. As ρ increases A also increases	1/2	1
	Alternatively,		
	$R_c = \rho_c \frac{l}{A_c}$; $R_m = \rho_m \frac{l}{A_m}$. since $\rho_m > \rho_c :: A_m > A_c$		
Set1,Q2	Phase angle = 60°	1	
Set2,Q2	[Note: If the student only writes, [$\cos \varphi = 0.5$], give ½ mark]		1
Set3,Q5			
Set1,Q3	Between plates of capacitor during charging / discharging	1	
Set2,Q1	Alternatively,		1
Set3,Q4 Set1,Q4	In the region of time varying electric field (i) P = NOT gate	1/2	1
Set1,Q4 Set2,Q5	(i) $P = NOT$ gate (ii) $Q = OR$ gate	1/2	1
Set3,Q1		/ 2	1
Set1,Q5	Def: The average time, between successive collisions of electrons, (in a	1	
Set2,Q4	conductor) is known as relaxation time		
Set3,Q3			1
	Section B	1	
Set1,Q6			
Set2,Q6	Electrostatic Shielding		
Set3,Q10	Potential in a cavity 1/2		
	Totalian in a cavity /2		
	The field inside a conductor is zero.	1/2	
	Sensitive instruments are shielded from outside electrical influences by		
	enclosing them in a hollow conductor.	1	
	(any other relevant answer.)		
	Potential inside the cavity is not zero/ potential is constant.	1/2	2
Set1,Q7	Two properties of electromagnetic waves ½ +½		
Set2,Q7	Showing e m waves have momentum 1		
Set3,Q8	Any two properties of electromagnetic waves	$\frac{1}{2} + \frac{1}{2}$	
	Such as (a) transverse nature (b) does not get deflected by electric fields or	/2 1 /2	
	magnetic fields (c) same speed in vacuum for all waves (d) no material		
	medium required for propagation (e) they get refracted, diffracted and		
	polarised / (any two properties)		
	Electric charges present on a plane, kept normal to the direction of		
	propagation of an e.m. wave can be set and sustained in motion by the electric	1	
ı	and magnetic field of the electromagnetic wave. The charges thus acquire		
	energy and momentum from the waves.		
		L	<u> </u>

Page 1 of 13 Final Draft 11/03/16 03:00 p.m

	Altornotivoly		
	Alternatively Radiation Pressure – Electromagnetic waves exert radiation pressure. Hence,		
G 41 00	they carry momentum.		2
Set1,Q8 Set2,Q8 Set3,Q9	$\begin{array}{ccc} \text{Principle} & \frac{1}{2} \\ \text{Calculation of } \lambda & 1\frac{1}{2} \end{array}$		
	Diffraction effects are observed for beams of electrons scattered by the crystals	1/2	
	$\lambda = \frac{1.227nm}{\sqrt{V}}$	1/2	
	$\lambda = \frac{1.227nm}{\sqrt{120}}$	1/2	
	Value $\lambda = 0.112$ nm Alternatively	1/2	
	$\lambda = \frac{h}{\sqrt{2meV}}$	1/2	
	$\sqrt{2}$ mev 6.63 x 10^{-34}		
		1/ ₂ 1/ ₂	2
Set1,Q9			
Set2,Q10 Set3,Q7	Function of Transducer 1 Function of Repeater 1		
	(i) Transducer: The device which converts one form of energy into another	1	
	(ii) Repeater: A repeater picks up signal, amplifies and retransmits them to receiver	1	2
Set1,Q10 Set2,Q9 Set3,Q6	Finding the principal quantum number 1 Finding the total energy 1		
5013,00	(i) $r = r_0 n^2$	1/ ₂ 1/ ₂	
	$21.2x10^{-11} = 5.3x10^{-11} \text{ n}^2 \text{ implies n} = 2$ $-13.6eV$		
	(ii) $E = \frac{-13.6eV}{n^2}$	1/2 1/2	
	$=\frac{-13.6eV}{2^2}=-3.4eV$, -	2
	[Award $\frac{1}{2}$ mark if the student just writes $E=E_1/4$] OR		
	Calculation of energy of photon 1½ Identification of transistion 1/2		
	Identification of transistion $\frac{1}{2}$ $hc = 6.64 \times 10^{-34} \times 3 \times 10^{8}$	$\frac{1}{2} + \frac{1}{2}$	
	(i) Energy of photon = $\frac{hc}{\lambda} = \frac{6.64 \times 10^{-34} \times 3 \times 10^8}{275 \times 10^{-9} \times 1.6 \times 10^{-18}} eV = 4.5 eV$ (ii) The corresponding transition is B	+ ½ ½	2

	Section C	1	
Set1,Q11 Set2,Q20 Set3,Q22	Diagram 1 1½ Deriving expression for E_{eq} 1½ Direction of E_{eq} 1½ $\frac{1}{2}$	1	
	$E_{+q} = Kq / (r^2 + a^2) \ \ \text{and} E_{-q} = Kq / (r^2 + a^2)$ The two Electric fields have equal magnitudes and their directions are as shown in diagram Components along dipole axis get added up while normal components cancel each other.	1/2	
	$ \therefore \mathbf{E} = -\left[\mathbf{E}_{-\mathbf{q}} + \mathbf{E}_{+\mathbf{q}} \right] \cos \theta \hat{r} \text{ so } \mathbf{E} = -\frac{K2qa}{[r^2 + a^2]^{\frac{3}{2}}} \hat{r} $ $ = \frac{kp}{[r^2 + a^2]^{\frac{3}{2}}} (p = 2qa\hat{r}) = \frac{-1}{4\pi\epsilon_0} \frac{p}{[r^2 + a^2]^{\frac{3}{2}}} $ $ \therefore \text{Direction of electric field is opposite to that of dipole moment.} $	1/2	3
Set1,Q12 Set2,Q15 Set3,Q16	a) To find charge accumulated in capacitor C_2 $\frac{1}{2}$ b) To find the ratio of energy stored $\frac{1}{2}$	/2	3
	a) Zero	1/2	
	b) We have $C_{\text{series}} = \frac{3\mu F}{3} = 1 \mu\text{F}$ Also, $C_{\text{parallel}} = (3+3+3)=9\mu\text{F}$ Energy stored $= \frac{1}{2}CV^2$ \therefore Energy in series combination $= \frac{1}{2}1 \times 10^{-6} \times V^2$	1/2 1/2 1/2	
	Energy in parallel combination = $\frac{1}{2}$ 9 × 10 ⁻⁶ × V^2	1/2	
	∴Ratio = 1:9	1/2	3


Set1,Q13			
Set2,Q16	a) Definition of intensity 1		
Set3,Q19	b) Required graph		
, ,	c) Explanation of nature of the curves 1		
	a) Intensity of radiation equals the energy of all the Photons incident		
	normally per unit area per unit time.		
	Alternatively, The intensity of radiation is proportional to the number	1	
	of photons emitted per unit area per unit time.		
	b) A pholó current		
	T ₁		
	I_1	1	
	I_3		
	24/2/2		
	Collector potential		
	c) As per Einstein's equation,		
	(i) The stopping potential is same for I_1 and I_2 as they have the	1/2	
	same frequency.		
	(ii) The saturation currents are as shown , because $I_1 > I_2 > I_3$	1/2	3
0.41.014			
Set1,Q14 Set2,Q14	(i) To explain the process of emission 1		
Set2,Q14 Set3,Q12	(ii) Material preferred to make LED and reason $\frac{1}{2} + \frac{1}{2}$		
5005,Q12	(iii)Two advantages of using LED $\frac{1}{2} + \frac{1}{2}$		
	(i) During Forward bias of LED, electrons move from n side to p side and	1	
	holes move from p side to n side. During recombination, energy is		
	released in the form of photons having energy hv of the order of band		
	gap.		
	(ii) CoAs/CoAsB (ony one)	1/2	
	(ii) GaAs/ GaAsP (any one)	72	
	Band gap should be 1.8 eV to 3 eV These materials have band gap which		
	is suitable to produce desired visible light wavelengths.	1/2	
	(iii)Low operational voltage, fast action, no warm up time required, nearly		
	monochromatic, long life ,ruggedness, fast on and off switching capacity.	1/2 + 1/2	3
	(any two points)		
Set1,Q15	Calculation of canacitance		
Set2,Q13	Calculation of capacitance 1 Calculation of Impedence 1		
Set3,Q14	Calculation of Power dissipitated 1		
		1/2	
	Capacitance = $C = \frac{1}{L\omega^2}$		
	Capacitance = C = $\frac{1}{L\omega^2}$ = $\frac{1}{\frac{4}{\pi^2}(2\pi \times 50)^2}$ F		
		1/2	
Dog	e 4 of 13 Final Draft 11/03/	16 03:00 1	2 m

Page 4 of 13 Final Draft 11/03/16 03:00 p.m

0.7 405 7	147	
$= 2.5 \times 10^{-5} F$	1/2	
Impedence = resistance(since V and I are in phase)	1/	
$\therefore \text{Impedence} = 100\Omega$	1/2	
Power discipated = $\frac{E_{rms}^2}{R}$	1/2	
$=\frac{(200)^2}{100}W=400$ watt	1/2	3
100	72	3
Set1,Q16 Set2,Q19 (i) To calculate angle of prism 1½		
Set3,Q20 (ii) To trace the path of incident light inside the prism 1½		
. (A+D)	1/2	
(i) $\mu = \frac{\sin\left(\frac{A+D}{2}\right)}{\sin\frac{A}{2}}$	72	
$\frac{\sin^{\frac{1}{2}}}{2}$		
$= \frac{\sin\left(\frac{2A}{2}\right)^2}{\sin\frac{A}{2}} = 2\cos A/2 = \sqrt{3}$	1/2	
$Sin\frac{A}{2}$	'-	
∴A= 60°	1/2	
$(ii) \mu = \sqrt{3} = \frac{1}{Sini_c}$		
Sim_c		
. Simi - 1 ~ 0.50		
$\therefore Sini_c = \frac{1}{\sqrt{3}} \cong 0.58$	1/2	
Lies between 30° and 45°		
Hence, TIR takes place.		
Alternatively,		
$sinc = \frac{1}{\sqrt{3}}$ which is less than $\frac{1}{\sqrt{2}}$		
\therefore angle of incidence $> i_c$		
∴TIR	1	3
Set1,Q17 To all (DE(A)) and a set leading of the set lead of t	1	3
Set 2 O.18 To plot (BE/A) vs mass number graph 1/2		
Set 3 O 17 To state the property of nuclear force \(\frac{1}{2} \)		
To explain the release of energy in fission and $\frac{1}{2} + \frac{1}{2}$		
fusion using the graph		
§ 10		
Building mergy men and		
og a mere o	11/2	
a 6 6 %	172	
₹ 4 · · · · · · · · · · · · · · · · · ·		
e e e e e e e e e e e e e e e e e e e		
Europe 2		
m 0 50 100 150 200 250		
Mass number (A)		
Nuclear force is Cotomated, or shout rough of convened	1/	
Nuclear force is Saturated, or short ranged [any one]	1/2	
The final system is more tightly bound when heavy nucleus undergoes	1/2	
nuclear fission. Hence, there is a release of energy.	/2	
The final system is more tightly bound when light nuclei undergoes nuclear	. 1/2	
The initial system is more again; sound when inght hadrer andergoes hadron	· '-	1
fusion. Hence, there is a releases of energy.		

	Alternatively: There is an increase in BE/nucleon both during (i) Nuclear fission of heavy nuclei and	1/2	
	(ii) Nuclear fussion of light nuclei	1/2	3
Set1,Q18 Set2,Q17 Set3,Q18	To draw circuit diagram of amplifier $1\frac{1}{2}$ Deriving the expression for β ac $1\frac{1}{2}$		
	a) $v_{l} = R_{B}$ V_{CC} V_{BB} V_{CC} V_{CC} V_{CC} V_{CC}	2	
	$A_{V} = \beta_{ac} \cdot \frac{R_{L}}{r}$ $\therefore \beta_{ac} = A_{V} \cdot \frac{r}{R_{L}}$	1	
	Alternatively: [If the student writes $\beta_{ac} = \frac{\delta I_c}{\Delta I_B}$ award full credit]		3
Set1,Q19 Set2,Q22 Set3,Q21	(i) Naming the phenomenon (ii) Two conditions for TIR (iii) Labelled diagram of optical fibre (i) Tatal integral at flaction		
	 (i) Total internal reflection (ii) Rays of light have to travel from optically denser medium to optically rarer medium and Angle of incidence in the denser medium should be greater than critical angle (iii) 	1 1/2 1/2	
	Low n	1	3
	[Note: Deduct ½ mark if labelling is not done]		
Set1,Q20 Set2,Q12 Set3,Q15	Three applications of internet $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$ Explanation of any one $\frac{1}{2} + \frac{1}{2} + \frac{1}{2}$		
	Applications of internet- e mail, social networking sites, e –commerce, mobile telephony, GPS, [Any three] Explanation of any one	1/2 + 1/2 + 1/2 11/2	3

Sot1 O21			
Set1,Q21 Set2,Q11	To show that the intensity of maximum is four times the 2		
Set3,Q11	intensity of light from each slit Conditions for constructive and destructive $\frac{1}{2} + \frac{1}{2}$		
	interference		
	Resultant displacement		
	$y=y_1+y_2$		
	$= a[\cos(\omega t) + \cos(\omega t + \phi)]$		
	$=2a\cos\left(\frac{\phi}{2}\right)\cos\left(\omega t+\frac{\phi}{2}\right)$	1/2	
	$\therefore \text{ amplitude of resultant wave} = 2a \cos\left(\frac{\phi}{2}\right)$	1/2	
	: Intensity = $4I_0 cos^2 \left(\frac{\phi}{2}\right)$, where $I_0 = a^2$ is the intensity of each harmonic	1/2	
	wave	72	
	At the maxima, $\phi = \pm 2n\pi \div \cos^2\frac{\phi}{2} = 1$	1/2	
	At the maxima, $I = 4I_0 = 4 \times \text{intensity due to one slit}$		
	I= $4I_0 cos^2 \left(\frac{\varphi}{2}\right)$ For constructive interference, I is maximum	1/2	
	It is possible when $cos^2\left(\frac{\phi}{2}\right) = 1; \frac{\phi}{2} = n\pi; \phi = 2n\pi$		
	For destructive interference, I is minimum, i.e, $I=0$		
	It is possible when $cos^2\left(\frac{\phi}{2}\right) = 0$; $\frac{\phi}{2} = \frac{(2n-1)\pi}{2}$; $\phi = (2n \pm 1)\frac{\pi}{2}$	1/2	3
Set1,Q22	(2) 2 2		
Set1,Q22 Set2,Q21	(i) Two properties of soft iron $\frac{1}{2} + \frac{1}{2}$		
Set3,Q13	(ii) Statement of Gauss's law in magnetism		
	Difference and Explanation $\frac{1}{2} + \frac{1}{2}$		
	(i) Low coercivity and high permeability	$\frac{1}{2} + \frac{1}{2}$	
	(ii) The net magnetic flux through any closed surface is zero/ $\oint B \cdot ds = 0$	1	
	$\oint E \cdot ds = \frac{q}{\epsilon_0}$ /The net electric flux through any closed surface is $\frac{1}{\epsilon_0}$	17	
	times the net charge. ϵ_o	1/ ₂ 1/ ₂	
	which indicates magnetic monopoles do not exist/ magnetic poles	, -	
	always exists in pairs [Note: If the student just states Guass's Law in electrostatics these 2 marks		3
	may be awarded.]		
	OR		
	a) Deriving the expression for Magnetic field at a point 2 outside the current carrying solenoid		
	b) Writing the condition 1		

For the mesh APQBA $-6-1 (I_2-I_1) + 3 I_1 = 0$ $Or -I_2 + 4I_1 = 6 \qquad (1)$ For the mesh PCDQP $2I_2 - 9 + 3I_2 + 1 (I_2 - I_1) = 0$ $Or 6I_2 - I_1 = 9 \qquad (2)$ Solving (1) and (2) , we get $I_1 = \frac{45}{23} A$ $I_2 = \frac{42}{23} A$ $\therefore \text{Current through the 1A resistor} = \frac{-3}{23} A$ a) Balancing length increases $\text{When series resistance increases, the potential gradient decreases. Hence } \ell \text{ increases. Null point shifts towards point B.}$ b) Balancing length decreases $V = E - I'r. \text{ As } I' \text{ increases V decreases. Hence balancing length decreases.}$	1 1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2	5
Null point shifts towards A. OR a) To calculate the current in the arm AC 3		
a) To calculate the current in the arm AC b) Principle of meter bridge c) Why metal strips are used in meter bridge 1		
$ \begin{array}{c c} & 30 \Omega \\ & & \\ & & \\ & I_1 \\ & A \\ & & \\ $		
For the mesh EFCAE $-30I_1 + 40 - 40 (I_1 + I_2) = 0$ $Or -7I_1 - 4I_2 = -4$ $Or 7I_1 + 4I_2 = 4 \dots (1)$	1	

Page 9 of 13 Final Draft 11/03/16 03:00 p.m

			1
	For the mesh ACDBA $40 (I_1 + I_2) - 40 + 20I_2 - 80 = 0$ Or $40I_1 + 60I_2 - 120 = 0$ Or $2I_1 + 3I_2 = 6$	1	
	a) Metre bridge works on Wheatstone's bridge balancing condition.	1	
	b) Metal strips will have less resistance / to maintain continuity, without adding to the resistance of the circuit.	1	5
Set1,Q25 Set2,Q26 Set3,Q24	(i) Biot-Savart law in vector form (ii) Deriving an expression for the magnetic field at a point on the axial line of current carrying coil (iii) Ratio of magnetic field at the centre and given outside point (i) $\overrightarrow{dB} = \frac{\mu_o I \overrightarrow{dt} \times \hat{r}}{4\pi r^2} = \frac{\mu_o I \overrightarrow{dt} \times \vec{r}}{4\pi r^3}$ (ii) $dB = \frac{\mu_o I dl \sin \theta}{4\pi r^2}$ here $\theta = 90$; $dB = \frac{\mu_o I dl}{4\pi r^2}$ $= dB \sin \phi = \frac{\mu_o I dl}{4\pi r^2} \sin \phi$ $B = \int_0^R \frac{\mu_o I dl}{4\pi r^2} \sin \phi = \frac{\mu_o I (2\pi R^2)}{4\pi r^3}$ $B = \frac{\mu_o NI(R^2)}{2r^3} = \frac{\mu_o NIR^2}{2(R^2 + d^2)^{\frac{3}{2}}}$	1 1/2 1/2 1/2 1/2+1/2	
	$d\mathbf{B}_{\mathbf{L}}\phi$ $d\mathbf{B}_{\mathbf{L}}\phi$ $d\mathbf{B}_{\mathbf{L}}\phi$ $d\mathbf{B}_{\mathbf{L}}\phi$ $d\mathbf{B}_{\mathbf{L}}\phi$ $d\mathbf{B}_{\mathbf{L}}\phi$ $d\mathbf{B}_{\mathbf{L}}\phi$ $d\mathbf{B}_{\mathbf{L}}\phi$	1/2	

	ıı NI		1
	(i) Magnetic field at the centre of the coil $B_1 = \frac{\mu_0 NI}{2R}$		
	Magnetic field at the outside point $B_2 = \frac{\mu_0 N I R^2}{2[R^2 + 3R^2]^{\frac{3}{2}}} = \frac{\mu_0 N I R^2}{2[4R^2]^{\frac{3}{2}}} = \frac{\mu_0 N I}{2*8R}$	1/2	
	$\frac{B_1}{B_2} = 8$	1/2	
	[Note: If the student takes $r = \sqrt{3} R$, the ratio of B centre to B axial would be $3\sqrt{3}:1$. Award 1 mark in this case also.]	2	5
	OR		
	a) Velocity selection condition b) Name of device What does the machine do Use of two fields Regions of existence of field Nature of fields 1/2 1/2 1/2 1/2 1/2 1/2 1/2		
	a) $qE = Bqv$ v = E/B	1	
	(b) Name of the device: Cyclotron It accelerates charged particles/ions Electric field accelerates the charged particles. Magnetic field makes particles to move in circle. Electric field exists between the Dees. Magnetic field exists both inside and outside the dees. Magnetic field is uniform / constant. Electric field is oscillating/ alternating in nature.	1/2 1/2 1 1 1	5
Set1,Q26 Set2,Q24 Set3,Q25	Explaining the formation of the diffraction pattern Secondary maxima Minima 1/2 Why do secondary maxima get weaker in intensity 1		
	From S M_2 Q_0 M_2 M_2 M_2 M_2 M_2 M_3 M_4 M_2 M_4 M_5 M_4 M_5	1/2	
Dogg	e 11 of 13 Final Draft 11/03	<u> </u> /16 03:00	

Page 11 of 13 Final Draft 11/03/16 03:00 p.m

For the cental point, we imagine the slit to be divided into two equal halves. The contribution of corresponding wavelets, in the two halves, are in phase with each other. Hnce we get a maxima at the central point. The entire incident wavefront contributes to this maxima. All other points, for which θ = (n + ½ λ/a) get a net non zero contribution from all the wavelets. Hence all such points are also points of maxima. Points for which θ = n²/a, the net contribution, from all the wavelets, is zero. Hence these points are point of minima. We thus get a diffraction pattern on the screen, made up of points of maxima and minima. Secondary maxima keep on getting weaker in intensity, with increasing n. This is because, at the (i) First secondary maxima, the net contribution is only from (effectively) 1/3 rd of the incident wavefront on the slit. (ii) Second secondary maxima, the net contribition is only from (effectively) 1/5 th of the incident wavefront on the slit. On the slit. (ii) Second secondary maxima, the net contribition is only from (effectively) 1/5 th of the incident wavefront on the slit. (ii) Second secondary maxima the net contribition is only from (effectively) 1/5 th of the incident wavefront on the slit. (ii) Second secondary maxima, the net contribition is only from (effectively) 1/5 th of the incident wavefront on the slit. And so on.	The diffraction pattern formed can be understood by adding the contributions from the different wavelets of the incident wavefront, with their proper phase differences.	1	
from all the wavelets. Hence all such points are also points of maxima. Points for which $\theta = \frac{n\lambda}{a}$, the net contribution, from all the wavelets, is zero. Hence these points are point of minima. We thus get a diffraction pattern on the screen, made up of points of maxima and minima. Secondary maxima keep on getting weaker in intensity, with increasing n. This is because, at the (i) First secondary maxima, the net contribution is only from (effectively) 1/3 rd of the incident wavefront on the slit. (ii) Second secondary maxima, the net contribution is only from (effectively) 1/5 th of the incident wavefront on the slit. And so on. OR (i) Ray diagram Deriving the relation between refractive indices, u and v 2 (ii) Change in focal length changes when the wavelength of light increases (iii) Change in focal length changes when the lens is dipped in water 1	The contribution of corresponding wavelets, in the two halves, are in phase with each other. Hnce we get a maxima at the central point. The entire	1/2	
Hence these points are point of minima. We thus get a diffraction pattern on the screen, made up of points of maxima and minima. Secondary maxima keep on getting weaker in intensity, with increasing n. This is because, at the (i) First secondary maxima, the net contribution is only from (effectively) 1/3 rd of the incident wavefront on the slit. (ii) Second secondary maxima, the net contribition is only from (effectively) 1/5th of the incident wavefront on the slit. And so on. OR (i) Ray diagram Deriving the relation between refractive indices, u and v 2 (ii) Change in focal length changes when the wavelength of light increases (iii) Change in focal length changes when the lens is dipped in water 1	from all the wavelets. Hence all such points are also points of maxima.		
Secondary maxima keep on getting weaker in intensity, with increasing n. This is because, at the (i) First secondary maxima, the net contribution is only from (effectively) 1/3 rd of the incident wavefront on the slit. (ii) Second secondary maxima, the net contribition is only from (effectively) 1/5 th of the incident wavefront on the slit. And so on. OR (i) Ray diagram Deriving the relation between refractive indices, u and v 2 (ii) Change in focal length changes when the wavelength of light increases (iii) Change in focal length changes when the lens is dipped in water 1	α	1/2	
Secondary maxima keep on getting weaker in intensity, with increasing n. This is because, at the (i) First secondary maxima, the net contribution is only from (effectively) 1/3 rd of the incident wavefront on the slit. (ii) Second secondary maxima, the net contribtion is only from (effectively) 1/5 th of the incident wavefront on the slit. And so on. OR (i) Ray diagram Deriving the relation between refractive indices, u and v 2 (ii) Change in focal length changes when the wavelength of light increases (iii) Change in focal length changes when the lens is dipped in water 1	The state of the s	1/2	
This is because, at the (i) First secondary maxima, the net contribution is only from (effectively) 1/3 rd of the incident wavefront on the slit. (ii) Second secondary maxima, the net contribtion is only from (effectively) 1/5 th of the incident wavefront on the slit. And so on. OR (i) Ray diagram Deriving the relation between refractive indices, u and v 2 (ii) Change in focal length changes when the wavelength of light increases 1 (iii) Change in focal length changes when the lens is dipped in water 1	Slit Incoming wave Viewing screen	1	
(i) Ray diagram Deriving the relation between refractive indices, u and v (ii) Change in focal length changes when the wavelength of light increases (iii) Change in focal length changes when the lens is dipped in water (i)	This is because, at the (i) First secondary maxima, the net contribution is only from (effectively) 1/3 rd of the incident wavefront on the slit. (ii) Second secondary maxima, the net contribtion is only from	1	5
Deriving the relation between refractive indices, u and v 2 (ii) Change in focal length changes when the wavelength of light increases 1 (iii) Change in focal length changes when the lens is dipped in water 1	OR		
n, (C)	Deriving the relation between refractive indices, u and v (ii) Change in focal length changes when the wavelength of light increases 1		
		1	

	1	1
$\tan \alpha = \frac{AN}{ON} \approx \alpha$		
$\tan \beta = \frac{AN}{ON} \approx \beta$		
$\tan \gamma = \frac{AN}{ON} \approx \gamma$		
$\alpha + \gamma = i; r = \gamma - \beta$	1	
$\frac{AN}{ON} + \frac{AN}{CN} = i; r = \frac{AN}{CN} - \frac{AN}{NI}$		
$n_{21} = \frac{\sin i}{\sin r} \approx \frac{i}{r}$		
$\frac{n_2}{n_1} = \frac{\frac{AN}{ON} + \frac{AN}{CN}}{\frac{AN}{CN} - \frac{AN}{NI}}$		
$n_2 \left(\frac{AN}{CN} - \frac{AN}{NI} \right) = n_1 \left(\frac{AN}{ON} + \frac{AN}{CN} \right)$	1/2	
CN = R; NI = V; ON = -u		
$\frac{n_2}{v} - \frac{n_1}{u} = \frac{n_2 - n_1}{R}$	1/2	
(ii) focal length increases with increase of wavelength	1/2	
$\frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \frac{2}{R}$ as wavelength increases μ_2/μ_1 decreases hence focal length increases	1/2	
(iii)As μ ₁ increases focal length increases	1/2	
$\frac{1}{f} = \left(\frac{\mu_2}{\mu_1} - 1\right) \frac{2}{R}$	1/2	5