MARKING SCHEME

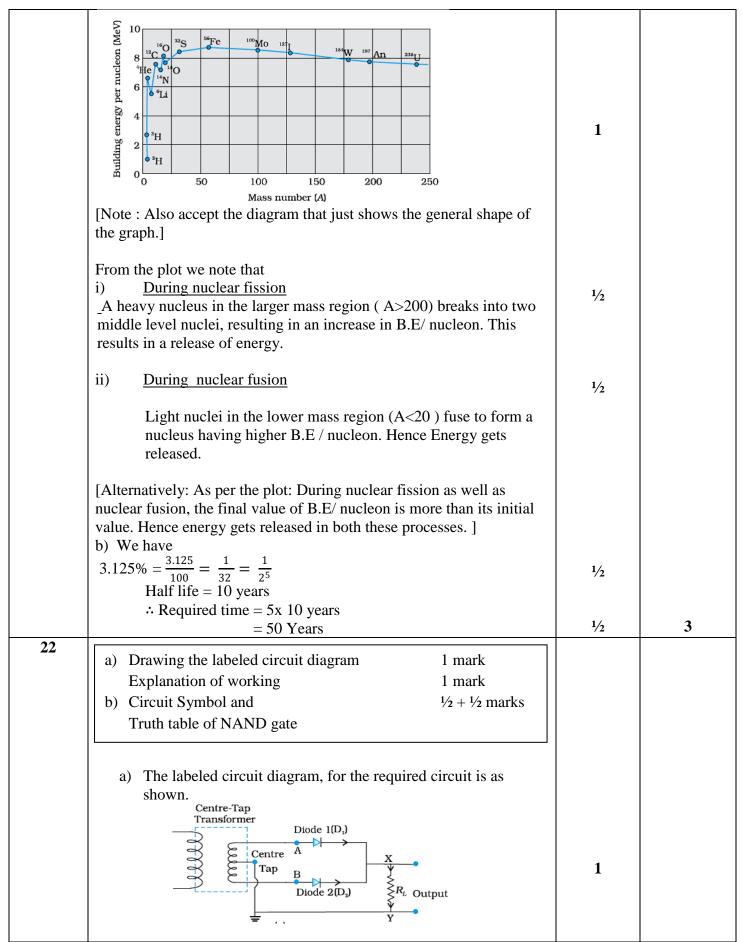
Q.NO.	MARKING SCHEME Expected Answer/Value Points	Marks	Total Marks
1	Photoelectric Current I ¹	1/2	
	Applied voltage → The graph <i>I</i> ₂ corresponds to radiation of higher intensity [Note: Deduct this ½ mark if the student does not show the two graphs starting from the same point.] (Also accept if the student just puts some indicative marks, or words, (like tick, cross, higher intensity) on the graph itself.	1/2	1
2	Electron (No explanation need to be given. If a student only writes the formula for frequency of charged particle (or $v_c \alpha \frac{q}{m}$) award ¹ / ₂ mark)	1	1
3	Daughter nucleus	1	1
4	Sky wave propagation	1	1
5	(a) Ultra violet rays(b) Ultra violet rays / Laser	1/2 1/2	1
	(SECTION – B)		
6	 a) Reason for calling IF rays as heat rays 1 mark b) Explanation for transport of momentum 1 mark a) Infrared rays are readily absorbed by the (water) molecules in most of the substances and hence increases their thermal motion. (If the student just writes that "infrared ray produce heating effects", award ¹/₂ mark only) b) Electromagnetic waves can set (and sustain) charges in motion. Hence, they are said to transport momentum. (Also accept the following: Electromagnetic waves are known to exert 'radiation pressure'. This pressure is due to the force associated with rate of change of momentum. Hence, EM waves transport momentum) 	1	2
7	Formula $\frac{1}{2}$ markStating that currents are equal $\frac{1}{2}$ markRatio of powers1 markPower = $I^2 R$ 1 mark are connected in series.	1/2 1/2	

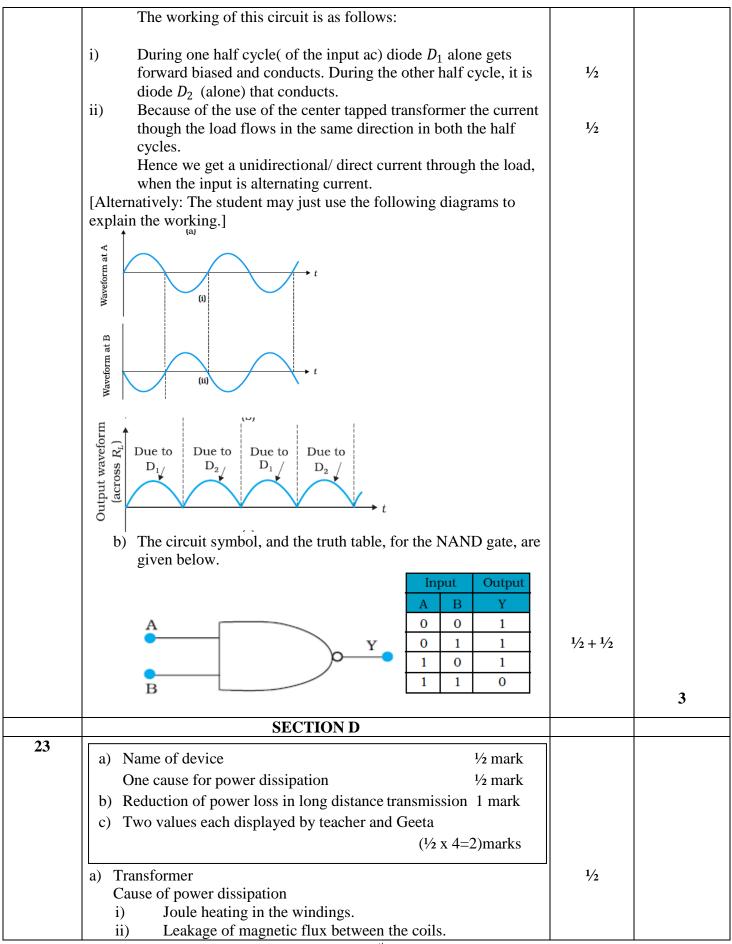
	$\therefore \frac{P_1}{P_2} = \frac{I^2 R_1}{I^2 R_2} = \frac{R_1}{R_2} = \frac{1}{R_2}$	1/2 1/2	2
8	2 Calculating the energy of the incident photon 1 mark Identifying the metals 1/2 mark Reason 1/2 mark		
	The energy of a photon of incident radiation is given by $E = \frac{hc}{\lambda}$ $\therefore E = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{(412.5 \times 10^{-9}) \times (1.6 \times 10^{-19})} \text{eV}$	1/2	
	$\approx 3.01 \text{eV}$ Hence, only Na and K will show photoelectric emission [Note: Award this ¹ / ₂ mark even if the student writes the name of <u>only one</u> of these metals] Reason: The energy of the incident photon is more than the work	1/2 1/2	
9	function of only these two metals.	1/2	2
	Formula for modulation index1 markFinding the peak value of the modulating signal1 mark		
	We have $\mu = \frac{A_m}{A_c}$	1	
	Here $\mu = 60\% = \frac{3}{5}$ $\therefore A_m = \mu A_c = \frac{3}{5} \times 15V$	1/2	_
10	= 9V	1/2	2
	Writing the equation1 markFinding the current1 mark		
	By Kirchoff's law, we have, for the loop ABCD, +200 - $38i$ - 10 = 0	1	
	$\therefore i = \frac{190}{38} A = 5A$ $10 V$ $A \qquad \qquad$	1	2
	Alternatively:		

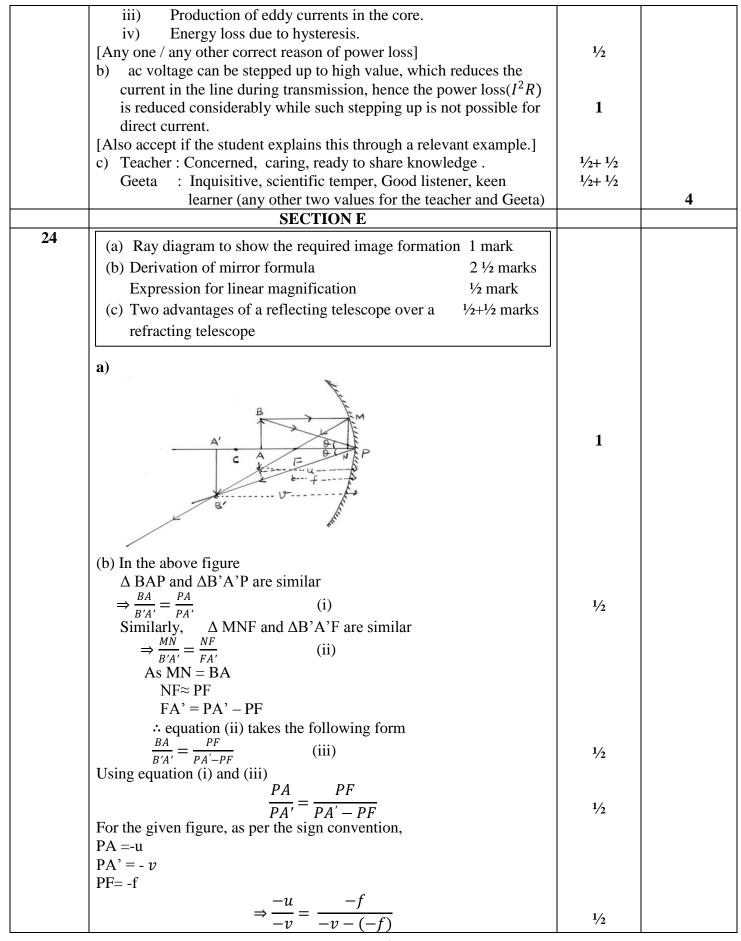
	Finding the Net emf1 markStating that $I = \frac{V}{R}$ $\frac{1}{2}$ markCalculating I $\frac{1}{2}$ mark		
	The two cells being in 'opposition', :.net $\operatorname{emf} = (200 - 10)V = 190 V$ Now $I = \frac{V}{R}$:. $I = \frac{190 V}{38 \Omega} = 5 A$ [Note: Some students may use the formulae $\frac{\varepsilon}{r} = \frac{\varepsilon_1}{r_1} + \frac{\varepsilon_2}{r_2}$, and $r = \frac{(r_1 r_2)}{(r_1 + r_2)}$ For two cells connected in parallel	1 1⁄2 1⁄2	2
	They may then say that $r = 0$; ε is indeterminate and henceI is also indeterminateAward full marks(2) to students giving this line of reasoning.]ORStating the formulaImark ImarkCalculating r		
	We have $r = \left(\frac{l_1}{l_2} - 1\right)R = \left(\frac{l_1 - l_2}{l_2}\right)R$ $\therefore r = \left(\frac{350 - 300}{300}\right) \times 9\Omega$ $= \frac{50}{300} \times 9\Omega = 1.5\Omega$	1 	2
	Section C		
11	a) Expression for Ampere's circuital law1/2 markDerivation of magnetic field inside the ring1 markb) Identification of the material1/2 markDrawing the modification of the field pattern1 mark		
	a) From Ampere's circuital law, we have, $\oint \vec{B} \cdot d\vec{l} = \mu_o \mu_r I_{enclosed} \qquad (i)$ For the field inside the ring, we can write $\oint \vec{B} \cdot d\vec{l} = \oint Bdl = B \cdot 2\pi r$	1/2	
	$(r = \text{radius of the ring})$ Also, $I_{enclosed} = (2\pi rn)I$ using equation (i) $\therefore B. 2\pi r = \mu_0 \mu_r. (n. 2\pi r)I$ $\therefore B = \mu_0 \mu_r nI$	1/2 1/2	
	[Award these $\left(\frac{1}{2} + \frac{1}{2}\right)$ marks even if the result is written without g the derivation] b) The material is paramagnetic.	jiving 1⁄2	

The field pattern gets modified as shown in the figure below.	1	
	1	3
12a) Formula and Calculation of work done in the two cases(1+1) marksb) Calculation of torque in case (ii)1 mark		
(a) Work done = $mB(\cos\theta_1 - \cos\theta_2)$ (i) $\theta_1 = 60^0, \theta_2 = 90^0$ \therefore work done = $mB(\cos60^0 - \cos90^0)$ $= mB(\frac{1}{2} - 0) = \frac{1}{2}mB$	1/2	
$=\frac{1}{2} \times 6 \times 0.44 \text{ J} = 1.32 \text{ J}$	1/2	
(ii) $\theta_1 = 60^0, \theta_2 = 180^0$ \therefore work done = $mB(\cos 60^0 - \cos 180^0)$ $= mB(\frac{1}{2} - (-1)) = \frac{3}{2}mB$	1/2	
$= \frac{3}{2} \times 6 \times 0.44 \text{ J} = 3.96 \text{J}$ [Also accept calculations done through changes in potential energy.] (b)	1/2	
Torque = $ \vec{m} \times \vec{B} = mB \sin\theta$ For $\theta = 180^{\circ}$, we have	1/2	
Torque = $6 \times 0.44 \sin 180^{\circ} = 0$ [If the student straight away writes that the torque is zero since magnetic moment and magnetic field are anti parallel in this orientation, award full 1mark]	1/2	3
13a) Definition and SI unit of conductivity $\frac{1}{2} + \frac{1}{2}$ marksb) Derivation of the expression for conductivity1 $\frac{1}{2}$ marksRelation between current density and electric field $\frac{1}{2}$ mark		
a) The conductivity of a material equals the reciprocal of the resistance of its wire of unit length and unit area of cross section. [Alternatively: The conductivity (σ) of a material is the reciprocal of its resistivity (ρ)] (Also accept $\sigma = \frac{1}{\rho}$) Its SI unit is	1/2	
$\left(\frac{1}{ohm-metre}\right)/ohm^{-1}m^{-1}/(mho m^{-1})/siemen m^{-1}$	1/2	
b) The acceleration, $\vec{a} = -\frac{e}{m}\vec{E}$	1/2	
The average drift velocity, v_d , is given by $v_d = -\frac{eE}{m}\tau$	1/2	
$\tau = average time between collisions/ relaxation time)$		

If <i>n</i> is the number of free electrons per given by $I = neA v_d $ $= \frac{e^2A}{m} \tau n E $ But $I = j A$ (j= current density) We, therefore, get $ j = \frac{ne^2}{m} \tau E $, The term $\frac{ne^2}{m} \tau$ is cond $\Rightarrow J = \sigma E$		1/2 1/2	3
14a) Finding the resultant force on a cl b) Potential Energy of the systema) Let us find the force on the charge Force due to the other charge Q $F_1 = \frac{1}{4\pi\epsilon_o} \frac{Q^2}{(a\sqrt{2})^2} = \frac{1}{4\pi\epsilon_o} \left(\frac{Q^2}{2a^2}\right)$ (along AC)Force due to the charge q (at B), F_2 $= \frac{1}{4\pi\epsilon_o} \frac{qQ}{a^2}$ along BCForce due to the charge q (at D), F_3 $= \frac{1}{4\pi\epsilon_o} \frac{qQ}{a^2}$ along DCResultant of these two equal forces $F_{23} = \frac{1}{4\pi\epsilon_o} \frac{qQ(\sqrt{2})}{a^2}$ (along AC) \therefore Net force on charge Q (at point C) $F = F_1 + F_{23} = \frac{1}{4\pi\epsilon_o} \frac{Q}{a^2} \left[\frac{Q}{2} + \sqrt{2}q\right]$ This force is directed along AC(For the charge Q, at the point A, the for magnitude but will be directed along CA)[Note : Don't deduct marks if the student of the net force , F]	$\frac{1 \text{ mark}}{e Q \text{ at the point C}}$	1/2 1/2 1/2 1/2	
b) Potential energy of the system $= \frac{1}{4\pi\epsilon_0} \left[4\frac{qQ}{a} + \frac{q^2}{a\sqrt{2}} + \frac{Q^2}{a\sqrt{2}} \right]$ $= \frac{1}{4\pi\epsilon_0 a} \left[4qQ + \frac{q^2}{\sqrt{2}} + \frac{Q^2}{\sqrt{2}} \right]$ OR a) Finding the magnitude of the resultant b) Finding the work done a) Force on charge q due to the charge -	1 mark	1⁄2 1⁄2	3

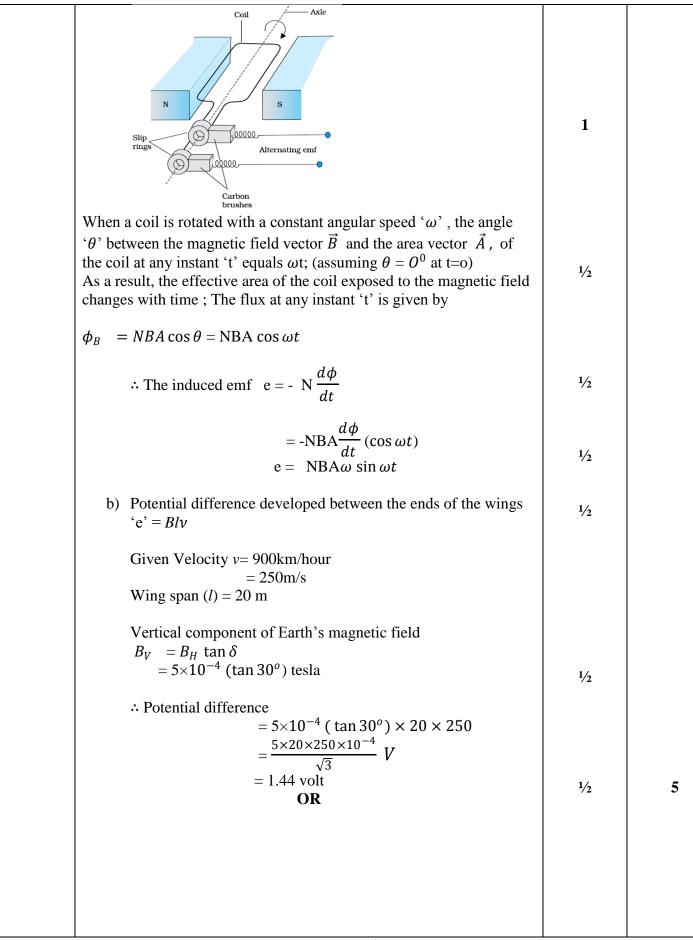

	$F_1 = \frac{1}{4\pi\epsilon_0} \left(\frac{4q^2}{l^2}\right)$, along AB	1/2	
	Force on the charge q , due to the charge $2q$		
	12		
	$F_2 = \frac{1}{4\pi\epsilon_0} \left(\frac{2q^2}{l^2}\right)$, along CA		
	The forces F_1 and F_2 are inclined to each other of an angle of 120°		
	other at an angle of 120°		
	Hence, resultant electric force on charge $4\overline{E}$		
	9 -49/ 29	1/	
	$F = \sqrt{F_1^2 + F_2^2 + 2F_1F_2\cos\theta}$	1/2	
	$= \sqrt{F_1^2 + F_2^2 + 2F_1F_2cos120^0}$		
	$=\sqrt{F_1^2 + F_2^2 - F_1 F_2}$	1/2	
	$= \left(\frac{1}{4\pi\epsilon_0}\frac{q^2}{l^2}\right)\sqrt{16+4-8}$		
	$1 \left(2\sqrt{3} q^2\right)$		
	$=rac{1}{4\pi\epsilon_0}\left(rac{2\sqrt{3}q^2}{l^2} ight)$	1/2	
	(b) Net P.E. of the system		
	$=\frac{1}{4\pi\epsilon_{0}}\cdot\frac{q^{2}}{l}\left[-4+2-8\right]$		
	$4\pi\epsilon_0 l$	1/2	
	$=\frac{(-10)}{4\pi\epsilon_0}\frac{q^2}{l}$		
	$10 q^2 5q^2$	1/2	3
	$= \frac{(-10)}{4\pi\epsilon_0} \frac{q^2}{l}$ $\therefore \text{ Work done} = \frac{10 q^2}{4\pi\epsilon_0 l} = \frac{5q^2}{2\pi\epsilon_0 l}$	72	5
15	Lens maker's formula ¹ /2 mark		
	Formula for 'combination of lenses' ¹ / ₂ mark		
	Obtaining the expression for μ 2 marks		
	Let μ_l denote the refractive index of the liquid. When the image of the		
	needle coincides with the lens itself ; its distance from the lens, equals		
	the relevant focal length.	1/2	
	With liquid layer present, the given set up, is equivalent to a combination of the given (convex) lens and a concavo plane / plano		
	concave 'liquid lens'.		
	We have $\frac{1}{f} = (\mu - 1) \left(\frac{1}{R_1} - \frac{1}{R_2} \right)$	1/2	
)	17	
	and $\frac{1}{f} = \left(\frac{1}{f_1} + \frac{1}{f_2}\right)$	1/2	
	as per the given data, we then have $1 + 1 = 1$	1/2	
	$\frac{1}{f_2} = \frac{1}{y} = (1.5 - 1) \left(\frac{1}{R} - \frac{1}{(-R)}\right)$		
	$=\frac{1}{R}$		
	$\therefore \frac{1}{x} = (\mu_l - 1) \left(-\frac{1}{R} \right) + \frac{1}{v} = \frac{-\mu_l}{v} + \frac{2}{v}$	1/2	

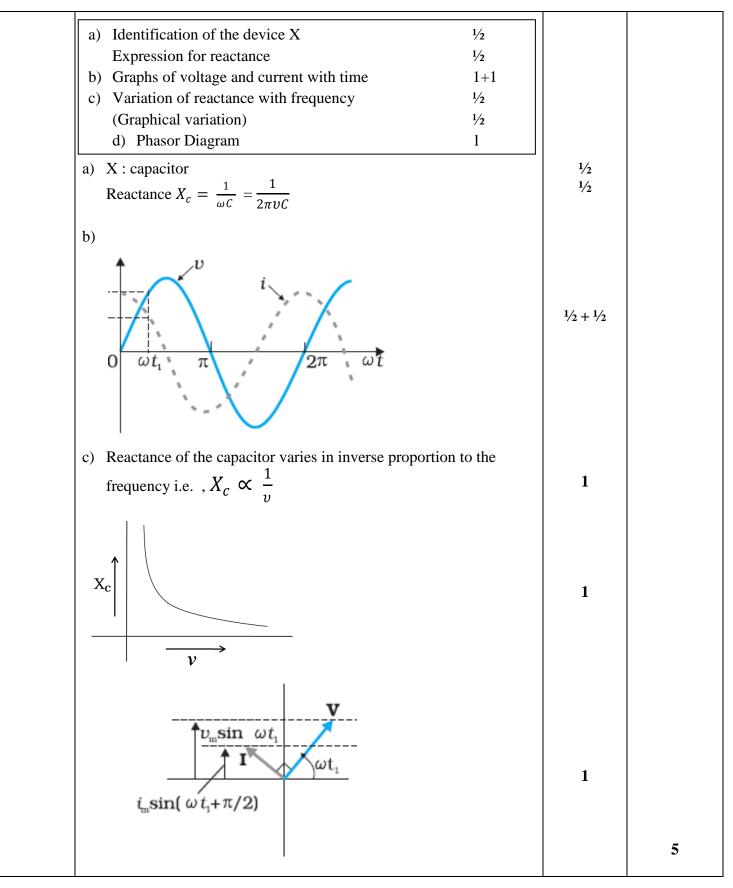

	$\therefore \frac{\mu_l}{y} = \frac{2}{y} - \frac{1}{x} = \left(\frac{2x - y}{xy}\right)$		
	or $\mu_l = \left(\frac{2x - y}{x}\right)$	1/2	3
16	or $\mu_l = \left(\frac{2x - y}{x}\right)$ a) Diagram $\frac{1}{2} \operatorname{mark}$ Polarisation by reflection 1 mark b) Justification 1 mark Writing yes/no $\frac{1}{2} \operatorname{mark}$ a) The diagram, showing polarisation by reflection is as shown. [Here the reflected and refracted rays are at right angle to each other.] Incident Reflected $\stackrel{I}{\longrightarrow} \operatorname{Reflacted}$ $\therefore r = \left(\frac{\pi}{2} - i_B\right)$ $\therefore \mu = \left(\frac{\sin i_B}{\sin r} = \tan i_B\right)$ Thus light gets totally polarised by reflection when it is incident at an angle $i_B(\operatorname{Brewster's angle})$, where $i_B = \tan^{-1}\mu$ b) The angle of incidence, of the ray, on striking the face AC is i= 60 ⁰ (as from figure) Also, relative refractive index	1/2 1/2 1/2 1/2	3
	of glass, with respect to the surrounding water, is $\mu_r = \frac{3/2}{4/3} = \frac{9}{8}$ Also sin $i = \sin 60^0 = \frac{\sqrt{3}}{2} = \frac{1.732}{2}$ B =0.866 For total internal reflection, the required critical angle, in this case, is given by sin $i_c = \frac{1}{\mu} = \frac{8}{9} \approx 0.89$ $\therefore i < i_c$ Hence the ray would not suffer total internal reflection on striking the face AC [The student may just write the two conditions needed for total internal reflection without analysis of the given case. The student may be awarded $(\frac{1}{2} + \frac{1}{2})$ mark in such a case.]	1/2 1/2 1/2	3


17			
	a) Statement of Bohr's postulate 1 mark		
	Explanation in terms of de Broglie hypothesis ¹ / ₂ mark		
	b) Finding the energy in the $n = 4$ level 1 mark		
	Estimating the frequency of the photon ¹ / ₂ mark		
	a) Bohr's postulate, for stable orbits, states "The electron, in an atom, revolves around the nucleus only in those orbits for which its angular momentum is an integral multiple of $\frac{h}{2\pi}$ (h = Planck's constant)," [Also accept $mvr = n \cdot \frac{h}{2\pi}$ ($n = 1,2,3,$) As per de Broglie's hypothesis $\lambda = \frac{h}{p} = \frac{h}{mv}$ For a stable orbit, we must have circumference of the	1⁄2	
	orbit= $n\lambda$ (<i>n</i> = 1,2,3,)		
	$\therefore 2\pi r = n.mv$		
	or $mvr = \frac{nh}{2\pi}$	1/2	
	Thus de –Broglie showed that formation of stationary pattern for intergral 'n' gives rise to stability of the atom.	1/2	
	This is nothing but the Bohr's postulate b) Energy in the $n = 4$ level $= \frac{-E_o}{4^2} = -\frac{E_o}{16}$ \therefore Energy required to take the electron from the ground state, to the $n = 4$ level $= \left(-\frac{E_o}{16}\right) - (-E_o)$	1⁄2	
	$= \frac{-1+16}{16}$ = $\frac{15}{16}E_o$ = $\frac{15}{16} \times 13.6 \times 1.6 \times 10^{-19}$ J Let the frequency of the photon be v, we have $hv = \frac{15}{16} \times 13.6 \times 1.6 \times 10^{-19}$ $\therefore v = \frac{15 \times 13.6 \times 1.6 \times 10^{-19}}{16 \times 6.63 \times 10^{-34}}$ Hz	1⁄2	
	$\simeq 3.1 \times 10^{15}$ Hz		
	(Also accept 3×10^{15} Hz)	1/2	3
18	a) Finding the (modified) ratio of the maximum 2 marks		
	and minimum intensities		
	b) Fringes obtained with white light 1 mark		
	a) After the introduction of the glass sheet (say, on the second slit), we have		
	$\frac{I_2}{I_1} = 50 \% = \frac{1}{2}$		
	·1 –		
	∴ Ratio of the amplitudes		

	$= \frac{a_2}{a_1} = \sqrt{\frac{1}{2}} = \frac{1}{\sqrt{2}}$ Hence $\frac{I_{max}}{I_{min}} = \left(\frac{a_1 + a_2}{a_1 - a_2}\right)^2$	1⁄2	
	Hence $\frac{1}{I_{min}} = \left(\frac{1}{a_1 - a_2}\right)$ $= \left(\frac{1 + \frac{1}{\sqrt{2}}}{1 - \frac{1}{\sqrt{2}}}\right)^2$	1⁄2	
	$= \left(\frac{1-\frac{1}{\sqrt{2}}}{\sqrt{2}+1}\right)^2$ $= \left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)^2$	1⁄2	
	(≃ 34)b) The central fringe remains white.	1/2	
	No clear fringe pattern is seen after a few (coloured) fringes on either side of the central fringe. [Note : For part (a) of this question, The student may	1	
	(i) Just draw the diagram for the Young's double slit experiment.Or (ii) Just state that the introduction of the glass sheet would introduce an additional phase difference and the position of the control fringe would shift		
19	central fringe would shift. For all such answers, the student may be awarded the full (2) marks for this part of this question.]		3
19	Input and Output characteristics 1+1marks Determination of a) Input resistance ¹ / ₂ mark		
	b) Current amplification factor $\frac{1}{2}$ mark The input and output characteristics, of a <i>n-p-n</i> transistor, in its CE configuration, are as shown.		
	$I_{B}/\mu A$ $100 - V_{ce} = 10.0 V$		
	80 - 60 - 40 - 20 - 20 - 20 - 20 - 20 - 20 - 2	1	
	$\frac{\text{Input resistance}}{r_i = \left(\frac{\Delta V_{BE}}{\Delta I_B}\right)_{V_{CE}}}$	1⁄2	

	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	
	The relevant values can be read from the input characteristics. Current amplification factor $\beta = \left(\frac{\Delta I_C}{\Delta I_B}\right)$ The relevant values can be read from the output characteristics, corresponding to a given value of <i>V</i> _{CE} .	1⁄2	3
20	 a) Stating the three reasons 1/2 + 1/2 + 1/2 mark b) Graphical representation of the audio signal, carrier wave and the amplitude modulated wave 		
	 a) The required three reasons are : (i) A reasonable length of the transmission antenna. (ii) Increase in effective power radiated by the antenna. (iii)Reduction in the possibility of 'mix-up' of different signals. b) The required graphical representation is as shown below 	1/2 1/2 1/2	
	$\begin{array}{c} c(t) & 0 \\ -1 \\ 0 \\ -1 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ $	1/2 1/2	
	$c_{m}(t)$ for AM 0 -20 0.5 1 1.5 2 2.5 3 (c)	1⁄2	3
21	a) Drawing the plot1 markExplaining the process of1Nuclear fission and Nuclear fusion1/2 + 1/2 marksb) Finding the required time1 marka) The plot of (B.E / nucleon) verses mass number is as shown.		




		50
<i>f</i>		
$\frac{u}{v} = \frac{f}{v - f}$		
uv –uf =vf		
Dividing each term by uvf, we get		
$\frac{1}{f} - \frac{1}{12} = \frac{1}{11}$		
)		
$\frac{1}{f} - \frac{1}{v} = \frac{1}{u}$ $\Rightarrow \frac{1}{f} = \frac{1}{v} + \frac{1}{u}$		
j v u	1/2	
Linear magnification = - v/u , (alternatively m = $\frac{h_i}{h_c}$)		
c) Advantages of reflecting telescope over refracting telescope	1/2	
(i) Mechanical support is easier	72	
(ii) Magnifying power is large		
(iii) Resolving power is large		
(iv) Spherical aberration is reduced	$\frac{1}{2} + \frac{1}{2}$	
(v) Free from chromatic aberration	72 + 72	
(v) Free from chromatic aberration (any two)		5
(any two)		Э
(a) Definition of wave front ¹ / ₂ mark		
Verification of laws of reflection 2 marks		
(b) Explanation of the effect on the size and intensity of		
central maxima 1+ 1marks		
(c) Explanation of the bright spot in the shadow of the obstacle		
¹ / ₂ mark		
72 IIIaIK		
(a)The wave front may be defined as a surface of constant phase.		
(Alternatively: The wave front is the locii of all points that are in the	1/2	
same phase)		
1 /		
Incident		
wavefront		
E Reflected wavefront		
	1	
$M \xrightarrow{A \cup 1} i$		
Let speed of the wave in the medium be ' v'		
Let the time taken by the wave front, to advance from point B to point		
C is 't'		
Hence $BC = v \tau$		
Let CE represent the reflected wave front	1/2	
Distance $AE = v \tau = BC$	72	
$\triangle AEC$ and $\triangle ABC$ are congruent		
$\therefore \ \angle BAC = \ \angle \ ECA$		
$\Rightarrow \angle i = \angle r$		
(b) Size of central maxima reduces to half,	1/2	

(: Size of central maxima = $\frac{2\lambda D}{a}$)	1/2	
$($ \therefore Size of central maxima = $\frac{1}{a}$)	1/2	
u u		
Intensity increases.		
This is because the amount of light, entering the slit, has increa	ased and $\frac{1}{2}$	
the area, over which it falls, decreases.		
(Also accept if the student just writes that the intensity become	es four	
fold)		
(c) This is because of diffraction of light.		
[<u>Alternatively:</u>	1/2	
Light gets diffracted by the tiny circular obstacle and reaches t	he	
centre of the shadow of the obstacle.]		
[Alternatively:		
There is a maxima, at the centre of the obstacle, in the diffraction	on	5
pattern produced by it.]		_
25		
a) Definition of electric flux 1 mark		
Stating scalar/vector ¹ /2 mark		
6		
Derivation of the expression for electric flux 1 marks		
b) Explanation of change in electric flux 2 marks		
a) Electric flux through a given surface is defined as the dot p	oroduct	
of electric field and area vector over that surface.		
Alternatively $\phi = \int_{S} \vec{E} \cdot \vec{dS}$	1	
$J_{s} = J_{s}$		
Also accomt		
Also accept		
Electric flux, through a surface equals the surface integral of the	ne	
electric field over that surface.		
It is a scalar quantity	1/2	
	/2	
$q \bullet d$	14	
	1/2	
$\leftarrow d \rightarrow$		
	vithin of	
Constructing a cube of side 'd' so that charge 'q' gets placed w	/itnin of	
this cube (Gaussian surface)		
According to Gauss 's law the Electric flux $\phi = \frac{Charge \ enclosed}{\epsilon_0}$	-	
ε_0		
$=\frac{1}{\varepsilon_0}$	1/2	
This is the total flux through all the six faces of the cube.		
Hence electric flux through the square $\frac{1}{6} \times \frac{q}{\epsilon_0} = \frac{q}{6\epsilon_0}$		
$\frac{1}{6} = \frac{1}{6} = \frac{1}$	1/2	
b) If the charge is moved to a distance d and the side of the sc	uare is	

doubled the cube will be constructed to have a side 2d but the total charge enclosed in it will remain the same. Hence the total flux through the cube and therefore the flux through the square will remain the same as before.	1+1	
[Deduct 1 mark if the student just writes No change /not affected without giving any explanation.] OR		5
 a) Derivation of the expression for electric field <i>E</i> 3 marks b) Graph to show the required variation of the 1 mark electric field 		
c) Calculation of work done 1 mark		
a) To calculate the electric field, imagine a cylindrical Gaussian surface, since the field is everywhere radial, flux through two ends of the cylindrical Gaussian surface is zero.	1/2	
At cylindrical part of the surface electric field \vec{E} is normal to the surface at every point and its magnitude is constant. Therefore flux through the Gaussian surface. = Flux through the curved cylindrical part of the surface. = E× $2\pi rl$ (i)	1/2	
Applying Gauss's Law	1/2	
Flux $\phi = \frac{q_{enclosed}}{\varepsilon_0}$ Total charge enclosed = Linear charge density × l = λl		
$\therefore \phi = \frac{\lambda L}{\varepsilon_0} $ (ii)	1/2	
Using Equations (i) & ii		
E × 2 π rl = $\frac{\lambda l}{\varepsilon_o}$		
$\Sigma \sim \Sigma \sim \pi n^2 = \frac{1}{\varepsilon_0}$	1/2	
$\Rightarrow \qquad \mathbf{E} = \frac{\lambda}{2\pi\varepsilon_o r}$	72	
In vector notation \rightarrow		
$\vec{E} = \frac{\lambda}{2\pi\varepsilon_0 r} \ \hat{n}$ (where \hat{n} is a unit vector normal to the line charge)	1/2	
	-	

	b) The required graph is as shown:		
	a) Work done in moving the charge 'q'. Through a small	1	
	displacement 'dr' $dW = \vec{F} \cdot \vec{dr}$ $dW = q\vec{E} \cdot \vec{dr}$ $= qEdrcos0$ $dW = q \times \frac{\lambda}{2\pi\varepsilon_0 r} dr$ Work done in moving the given charge from r_1 to $r_2(r_2 > r_1)$ $W = \int_{r_1}^{r_2} dW \int = \int_{r_1}^{r_2} \frac{\lambda q dr}{2\pi\varepsilon_0 r}$ $W = \frac{\lambda q}{2\pi\varepsilon_0} [log_e r_2 - log_e r_1]$	1⁄2	
	$W = \frac{1}{2\pi\varepsilon_o} [log_e r_2 - log_e r_1]$ $W = \frac{\lambda q}{2\pi\varepsilon_o} \left[log_e \frac{r_2}{r_1} \right]$	1/2	5
26	 a) Principle of ac generator ^{1/2} mark working ^{1/2} mark Labeled diagram 1 mark Derivation of the expression for induced emf 1 ^{1/2} mark b) Calculation of potential difference 1 ^{1/2} mark a) The AC Generator works on the principle of electromagnetic induction. when the magnetic flux through a coil changes, an emf is induced in it. As the coil rotates in magnetic field the effective area of the loop, (i.e. A cos θ) exposed to the magnetic field keeps on changing, hence magnetic flux changes and an emf is induced. 	1/2 1/2	

