MARKING SCHEME

Q.NO.	Expected Answer/Value Points	Marks	Total Marks
1	Sky wave propagation	1	1
2	Daughter nucleus	1	1
3	(a) Ultra violet rays (b) Ultra violet rays / Laser	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \end{aligned}$	1
4	 The graph I_{2} corresponds to radiation of higher intensity [Note: Deduct this $1 / 2$ mark if the student does not show the two graphs starting from the same point.] (Also accept if the student just puts some indicative marks, or words, (like tick, cross, higher intensity) on the graph itself.	$1 / 2$ $1 / 2$	1
5	Electron (No explanation need to be given. If a student only writes the formula for frequency of charged particle (or $v_{c} \alpha \frac{q}{m}$) award $1 / 2$ mark)	1	1
	SECTION B		
6	Formula for modulation index 1 mark Finding the peak value of the modulating signal 1 mark We have $\mu=\frac{A_{m}}{A_{c}}$ Here $\mu=60 \%=\frac{3}{5}$ $\begin{aligned} \therefore A_{m}=\mu A_{c} & =\frac{3}{5} \times 15 \mathrm{~V} \\ & =9 \mathrm{~V} \end{aligned}$	1 $1 / 2$ $1 / 2$	2
7	Calculating the energy of the incident photon 1 mark Identifying the metals $1 / 2 \mathrm{mark}$ Reason $1 / 2 \mathrm{mark}$ The energy of a photon of incident radiation is given by $\begin{gathered} E=\frac{h c}{\lambda} \\ \therefore E=\frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{\left(412.5 \times 10^{-9}\right) \times\left(1.6 \times 10^{-19}\right)} \mathrm{eV} \end{gathered}$	1/2	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\cong 3.01 \mathrm{eV}
\] \\
Hence, only Na and K will show photoelectric emission \\
[Note: Award this \(1 / 2\) mark even if the student writes the name of only one of these metals] \\
Reason: The energy of the incident photon is more than the work function of only these two metals.
\end{tabular} \& \(1 / 2\)
\(1 / 2\)

$1 / 2$ \& 2 \\

\hline \multirow[t]{7}{*}{8} \& | Writing the equation | 1 mark |
| :--- | :--- |
| Finding the current | 1 mark | \& \& \\

\hline \& | By Kirchoff's law, we have, for the loop ABCD, $\begin{aligned} & +200-38 \mathrm{i}-10=0 \\ & \therefore i=\frac{190}{38} \mathrm{~A}=5 \mathrm{~A} \end{aligned}$ |
| :--- |
| Alternatively: | \& 1

1 \& 2 \\

\hline \& | Finding the Net emf | 1 mark |
| :--- | :--- |
| Stating that $\mathrm{I}=\frac{V}{R}$ | $1 / 2 \mathrm{mark}$ |
| Calculating I | $1 / 2 \mathrm{mark}$ | \& \& \\

\hline \& | The two cells being in 'opposition', \therefore net $\varepsilon \mathrm{mf}=(200-10) \mathrm{V}=190 \mathrm{~V}$ |
| :--- |
| Now $I=\frac{\mathrm{V}}{R}$ $\therefore I=\frac{190 \mathrm{~V}}{38 \Omega}=5 \mathrm{~A}$ |
| [Note: Some students may use the formulae $\frac{\varepsilon}{r}=\frac{\varepsilon_{1}}{r_{1}}+\frac{\varepsilon_{2}}{r_{2}}$, and $r=\left(r_{1} r_{2}\right) /\left(r_{1}+r_{2}\right)$ | \& 1

$1 / 2$
$1 / 2$ \& 2 \\

\hline \& | For two cells connected in parallel |
| :--- |
| They may then say that $\mathrm{r}=0$; |
| ε is indeterminate and hence |
| I is also indeterminate |
| Award full marks(2) to students giving this line of reasoning.] |
| OR | \& \& \\

\hline \& | Stating the formula | 1mark |
| :--- | :--- |
| Calculating r | 1mark | \& \& \\

\hline \& $$
\text { We have } \begin{aligned}
r=\left(\frac{l_{1}}{l_{2}}-1\right) R & =\left(\frac{l_{1}-l_{2}}{l_{2}}\right) R \\
\therefore r & =\left(\frac{350-300}{300}\right) \times 9 \Omega \\
& =\frac{50}{300} \times 9 \Omega=1.5 \Omega
\end{aligned}
$$ \& 1

$1 / 2$
$1 / 2$ \& 2 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 9 \& \begin{tabular}{l}
a) Reason for calling IF rays as heat rays \\
1 mark \\
b) Explanation for transport of momentum \\
a) Infrared rays are readily absorbed by the (water) molecules in most of the substances and hence increases their thermal motion. (If the student just writes that "infrared ray produce heating effects", award \(1 / 2\) mark only) \\
b) Electromagnetic waves can set (and sustain) charges in motion. Hence, they are said to transport momentum. \\
(Also accept the following: Electromagnetic waves are known to exert 'radiation pressure'. This pressure is due to the force associated with rate of change of momentum. Hence, EM waves transport momentum)
\end{tabular} \& 迷 \& 2 \\
\hline 10 \& \begin{tabular}{l}
\begin{tabular}{|ll|}
\hline Formula \& \(1 / 2 \mathrm{mark}\) \\
Stating that currents are equal \& \(1 / 2 \operatorname{mark}\) \\
Ratio of powers \& 1 mark \\
\hline
\end{tabular} \\
Power \(=I^{2} R\) \\
The current, in the two bulbs, is the same as they are connected in series.
\[
\begin{aligned}
\therefore \frac{P_{1}}{P_{2}} \& =\frac{I^{2} R_{1}}{I^{2} R_{2}}=\frac{R_{1}}{R_{2}} \\
\& =\frac{1}{2}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 2 \\
\hline \& SECTION C \& \& \\
\hline 11 \& \begin{tabular}{l}
\begin{tabular}{|cc|}
\hline Input and Output characteristics \& \(1+1\) marks \\
Determination of \& \(1 / 2 \mathrm{mark}\) \\
a) Input resistance \& \(1 / 2 \mathrm{mark}\) \\
b) Current amplification factor \& \\
\hline
\end{tabular} \\
b) Current amplification factor \\
The input and output characteristics, of a \(n-p-n\) transistor, in its CE configuration, are as shown. \\
Input resistance
\[
r_{i}=\left(\frac{\Delta V_{B E}}{\Delta I_{B}}\right)_{V_{C E}}
\]
\end{tabular} \& 1

$11 / 2$ \& \\
\hline
\end{tabular}

	 The relevant values can be read from the input characteristics. Current amplification factor $\beta=\left(\frac{\Delta I_{C}}{\Delta I_{B}}\right)$ The relevant values can be read from the output characteristics, corresponding to a given value of $V_{C E}$.	1/20	3
12	a) Drawing the labeled circuit diagram 1 mark Explanation of working 1 mark b) Circuit Symbol and Truth table of NAND gate a) The labeled circuit diagram, for the required circuit is as shown. The working of this circuit is as follows: i) During one half cycle(of the input ac) diode D_{1} alone gets forward biased and conducts. During the other half cycle, it is diode D_{2} (alone) that conducts. ii) Because of the use of the center tapped transformer the current though the load flows in the same direction in both the half cycles. Hence we get a unidirectional/ direct current through the load, when the input is alternating current. [Alternatively: The student may just use the following diagrams to explain the working.]	$1 / 2$ $1 / 2$	

	 b) The circuit symbol, and the truth table, for the NAND gate, are given below.	$1 / 2+1 / 2$	3
13	a) Drawing the plot 1 mark Explaining the process of Nuclear fission and Nuclear fusion $1 / 2+1 / 2$ marks b) Finding the required time 1 mark a) The plot of (B.E / nucleon) verses mass number is as shown. [Note : Also accept the diagram that just shows the general shape of the graph.] From the plot we note that i) During nuclear fission _A heavy nucleus in the larger mass region ($\mathrm{A}>200$) breaks into two	1 $1 / 2$	

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
middle level nuclei, resulting in an increase in B.E/ nucleon. This results in a release of energy. \\
ii) During nuclear fusion \\
Light nuclei in the lower mass region (\(\mathrm{A}<20\)) fuse to form a nucleus having higher B.E / nucleon. Hence Energy gets released. \\
[Alternatively: As per the plot: During nuclear fission as well as nuclear fusion, the final value of B.E/ nucleon is more than its initial value. Hence energy gets released in both these processes.] \\
b) We have
\[
\begin{aligned}
\& 3.125 \%=\frac{3.125}{100}=\frac{1}{32}=\frac{1}{2^{5}} \\
\& \text { Half life }=10 \text { years } \\
\& \therefore \text { Required time }
\end{aligned}=5 \times 10 \text { years } 3 \text {. } \quad=50 \text { Years }
\]
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$ \& 3 \\

\hline 14 \& | a) Stating the three reasons |
| :--- |
| b) Graphical representation of the audio signal, carrier wave and the amplitude modulated wave |
| a) The required three reasons are : |
| (i) A reasonable length of the transmission antenna. |
| (ii) Increase in effective power radiated by the antenna. |
| (iii)Reduction in the possibility of 'mix-up' of different signals. |
| b) The required graphical representation is as shown below | \& $1 / 2$

$1 / 2$
$1 / 2$

$1 / 2$
$1 / 2$
$1 / 2$ \& 3 \\

\hline 15 \& | a) Finding the (modified) ratio of the maximum 2 marks and minimum intensities |
| :--- |
| b) Fringes obtained with white light 1mark |
| a) After the introduction of the glass sheet (say, on the second slit), we have $\frac{I_{2}}{I_{1}}=50 \%=\frac{1}{2}$ |
| \therefore Ratio of the amplitudes | \& \& \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
=\frac{a_{2}}{a_{1}}=\sqrt{\frac{1}{2}}=\frac{1}{\sqrt{2}}
\] \\
Hence \(\frac{I_{\text {max }}}{I_{\text {min }}}=\left(\frac{a_{1}+a_{2}}{a_{1}-a_{2}}\right)^{2}\)
\[
=\left(\frac{1+\frac{1}{\sqrt{2}}}{1-\frac{1}{\sqrt{2}}}\right)^{2}
\]
\[
=\left(\frac{\sqrt{2}+1}{\sqrt{2}-1}\right)^{2}
\] \\
\((\simeq 34)\) \\
b) The central fringe remains white. \\
No clear fringe pattern is seen after a few (coloured) fringes on either side of the central fringe. \\
[Note : For part (a) of this question, \\
The student may \\
(i) Just draw the diagram for the Young's double slit experiment. \\
Or (ii) Just state that the introduction of the glass sheet would introduce an additional phase difference and the position of the central fringe would shift. \\
For all such answers, the student may be awarded the full (2) marks for this part of this question.]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
1 \& 3 \\
\hline 16 \& \begin{tabular}{l}
\begin{tabular}{|lll|}
\hline a) \& Statement of Bohr's postulate \& 1 mark \\
\& Explanation in terms of de Broglie hypothesis \& \(1 / 2\) mark \\
b) \& Finding the energy in the \(n=4\) level \& 1 mark \\
\& Estimating the frequency of the photon \& \(1 / 2\) mark \\
\hline
\end{tabular} \\
a) Bohr's postulate, for stable orbits, states "The electron, in an atom, revolves around the nucleus only in those orbits for which its angular momentum is an integral multiple of \(\frac{h}{2 \pi}(h=\) Planck's constant)," \\
[Also accept \(m v r=n \cdot \frac{h}{2 \pi} \quad(n=1,2,3, \ldots \ldots)\) \\
As per de Broglie's hypothesis
\[
\lambda=\frac{h}{p}=\frac{h}{m v}
\] \\
For a stable orbit, we must have circumference of the orbit= \(n \lambda \quad(n=1,2,3, \ldots \ldots\).
\[
\therefore 2 \pi r=n . m v
\] \\
or \(m v r=\frac{n h}{2 \pi}\) \\
Thus de -Broglie showed that formation of stationary pattern for intergral ' \(n\) ' gives rise to stability of the atom. \\
This is nothing but the Bohr's postulate
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$ \& \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
b) Energy in the \(n=4\) level \(=\frac{-E_{o}}{4^{2}}=-\frac{E_{o}}{16}\) \\
\(\therefore\) Energy required to take the electron from the ground state, to the
\[
\begin{aligned}
\& n=4 \text { level }=\left(-\frac{E_{o}}{16}\right)-\left(-E_{o}\right) \\
\&=\frac{-1+16}{16} \\
\&=\frac{15}{16} E_{o} \\
\&=\frac{15}{16} \times 13.6 \times 1.6 \times 10^{-19} \mathrm{~J}
\end{aligned}
\] \\
Let the frequency of the photon be \(v\), we have
\[
\begin{aligned}
\& h v=\frac{15}{16} \times 13.6 \times 1.6 \times 10^{-19} \\
\& \therefore v=\frac{15 \times 13.6 \times 1.6 \times 10^{-19}}{16 \times 6.63 \times 10^{-34}} \mathrm{~Hz} \\
\& \quad \simeq 3.1 \times 10^{15} \mathrm{~Hz}
\end{aligned}
\] \\
(Also accept \(3 \times 10^{15} \mathrm{~Hz}\))
\end{tabular} \& \(1 / 2\)

$1 / 2$

$1 / 2$ \& 3 \\

\hline 17 \& | a) Diagram $1 / 2 \mathrm{mark}$
 Polarisation by reflection 1 mark
 b) Justification 1 mark
 Writing yes $/ \mathrm{no}$ $1 / 2 \mathrm{mark}$ |
| :--- |
| a) The diagram, showing polarisation by reflection is as shown. [Here the reflected and refracted rays are at right angle to each other.] $\therefore r=\left(\frac{\pi}{2}-i_{B}\right)$ $\therefore \mu=\left(\frac{\sin i_{B}}{\sin r}=\tan i_{B}\right)$ |
| Thus light gets totally polarised by reflection when it is incident at an angle i_{B} (Brewster's angle), where $i_{B}=\tan ^{-1} \mu$ |
| a) The angle of incidence, of the ray, on striking the face AC is $i=60^{\circ}$ (as from figure) |
| Also, relative refractive index of glass, with respect to the surrounding water, is $\mu_{r}=\frac{3 / 2}{4 / 3}=\frac{9}{8}$ |
| Also $\sin i=\sin 60^{\circ}=\frac{\sqrt{3}}{2}=\frac{1.732}{2}$ $=0.866$ |
| For total internal reflection, the required critical angle, in this case, is given by | \& 1/2 \& \\

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\begin{aligned}
\& \sin i_{c}=\frac{1}{\mu}=\frac{8}{9} \simeq 0.89 \\
\& \therefore i<i_{c}
\end{aligned}
\] \\
Hence the ray would not suffer total internal reflection on striking the face AC \\
[The student may just write the two conditions needed for total internal reflection without analysis of the given case. \\
The student may be awarded (\(1 / 2+1 / 2\)) mark in such a case.]
\end{tabular} \& \(1 / 2\)
\(1 / 2\) \& 3 \\
\hline \multirow[t]{2}{*}{18} \& \begin{tabular}{|ll|}
\hline Lens maker's formula \& \(1 / 2 \mathrm{mark}\) \\
Formula for 'combination of lenses' \& \(1 / 2 \mathrm{mark}\) \\
Obtaining the expression for \(\mu\) \& 2 marks \\
\hline
\end{tabular} \& \& \\
\hline \& \begin{tabular}{l}
Let \(\mu_{l}\) denote the refractive index of the liquid. When the image of the needle coincides with the lens itself ; its distance from the lens, equals the relevant focal length. \\
With liquid layer present, the given set up, is equivalent to a combination of the given (convex) lens and a concavo plane / plano concave 'liquid lens'. \\
We have \(\frac{1}{f}=(\mu-1)\left(\frac{1}{R_{1}}-\frac{1}{R_{2}}\right)\)
\[
\text { and } \frac{1}{f}=\left(\frac{1}{f_{1}}+\frac{1}{f_{2}}\right)
\] \\
as per the given data, we then have
\[
\begin{aligned}
\& \frac{1}{f_{2}=\frac{1}{y}=} \begin{aligned}
\&(1.5-1)\left(\frac{1}{R}-\frac{1}{(-R)}\right) \\
\& \therefore \frac{1}{x}=\left(\mu_{l}-1\right)\left(-\frac{1}{R}\right)+\frac{1}{y}=\frac{-\mu_{l}}{y}+\frac{2}{y} \\
\& \therefore \frac{\mu_{l}}{y}=\frac{2}{y}-\frac{1}{x}=\left(\frac{2 x-y}{x y}\right) \\
\& \text { or } \mu_{l}=\left(\frac{2 x-y}{x}\right)
\end{aligned}
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\) \& 3 \\
\hline 19 \& \begin{tabular}{l}
\begin{tabular}{lll}
a) \& Expression for Ampere's circuital law \& \(1 / 2\) mark \\
\& Derivation of magnetic field inside the ring \& 1 mark \\
b) \& Identification of the material \& \(1 / 2\) mark \\
\& Drawing the modification of the field pattern \& 1 mark \\
\hline
\end{tabular} \\
a) From Ampere's circuital law, we have,
\[
\begin{equation*}
\oint \vec{B} \cdot d \vec{l}=\mu_{o} \mu_{r} I_{\text {enclosed }} \tag{i}
\end{equation*}
\] \\
For the field inside the ring, we can write
\[
\oint \vec{B} \cdot d \vec{l}=\oint B d l=B \cdot 2 \pi r
\] \\
(\(r=\) radius of the ring) \\
Also, \(I_{\text {enclosed }}=(2 \pi r n) I\) \\
using equation (i) \\
\(\therefore B .2 \pi r=\mu_{o} \mu_{r} .(n .2 \pi r) I\) \\
\(\therefore B=\mu_{o} \mu_{r} n I\)
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$ \& \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
[Award these \(\left(\frac{1}{2}+\frac{1}{2}\right)\) marks even if the result is written without giving the derivation] \\
b) The material is paramagnetic. The field pattern gets modified as shown in the figure below.
\end{tabular} \& \(1 / 2\)
1 \& 3 \\
\hline 20 \& \begin{tabular}{l}
a) Formula and \\
Calculation of work done in the two cases \\
(\(1+1\)) marks \\
b) Calculation of torque in case (ii) \\
(a) \\
Work done \(=m \mathrm{~B}\left(\cos \theta_{1}-\cos \theta_{2}\right)\) \\
(i) \(\theta_{1}=60^{\circ}, \theta_{2}=90^{\circ}\)
\[
\begin{aligned}
\therefore \text { work done } \& =m \mathrm{~B}\left(\cos 60^{0}-\cos 90^{0}\right) \\
\& =m \mathrm{~B}\left(\frac{1}{2}-0\right)=\frac{1}{2} m \mathrm{~B} \\
\& =\frac{1}{2} \times 6 \times 0.44 \mathrm{~J}=1.32 \mathrm{~J}
\end{aligned}
\] \\
(ii) \(\theta_{1}=60^{\circ}, \theta_{2}=180^{\circ}\)
\[
\begin{aligned}
\therefore \text { work done } \& =m \mathrm{~B}\left(\cos 60^{0}-\cos 180^{0}\right) \\
\& =m \mathrm{~B}\left(\frac{1}{2}-(-1)\right)=\frac{3}{2} m \mathrm{~B} \\
\& =\frac{3}{2} \times 6 \times 0.44 \mathrm{~J}=3.96 \mathrm{~J}
\end{aligned}
\] \\
[Also accept calculations done through changes in potential energy.] \\
(b) \\
Torque \(=|\vec{m} \times \vec{B}|=m \mathrm{~B} \sin \theta\) \\
For \(\theta=180^{\circ}\), we have \\
Torque \(=6 \times 0.44 \sin 180^{\circ}=0\) \\
[If the student straight away writes that the torque is zero since magnetic moment and magnetic field are anti parallel in this orientation, award full 1mark]
\end{tabular} \& 1/2 \& 3 \\
\hline 21 \& \begin{tabular}{l}
a) Definition and SI unit of conductivity \\
\(1 / 2+1 / 2\) marks \\
b) Derivation of the expression for conductivity \\
\(11 / 2\) marks Relation between current density and electric field \(1 / 2\) mark \\
a) The conductivity of a material equals the reciprocal of the resistance of its wire of unit length and unit area of cross section. \\
[Alternatively: \\
The conductivity \((\sigma)\) of a material is the reciprocal of its resistivity (\(\rho\))] \\
(Also accept \(\sigma=\frac{1}{\rho}\)) \\
Its SI unit is \\
\(\left(\frac{1}{\text { ohm-metre }}\right) /\) ohm \(^{-1} \mathrm{~m}^{-1} /\left(\right.\) mho \(\left.^{-1}\right) /\) siemen \(\mathrm{m}^{-1}\) \\
b) The acceleration, \(\vec{a}=-\frac{e}{m} \vec{E}\)
\end{tabular} \& \(1 / 2\)

$1 / 2$
$1 / 2$ \& \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
a) Finding the magnitude of the resultant force on charge \(q 2\) marks \\
b) Finding the work done \\
b) Force on charge \(q\) due to the charge \(4 q\)
\[
F_{1}=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{4 q^{2}}{l^{2}}\right) \text {, along } \mathrm{AB}
\] \\
Force on the charge \(q\), due to the charge \(2 q\)
\[
F_{2}=\frac{1}{4 \pi \epsilon_{0}}\left(\frac{2 q^{2}}{l^{2}}\right) \text {, along CA }
\] \\
The forces \(F_{1}\) and \(F_{2}\) are inclined to each other at an angle of \(120^{\circ}\) \\
Hence, resultant electric force on charge \(q\)
\[
\begin{aligned}
F \& =\sqrt{F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos \theta} \\
\& =\sqrt{F_{1}^{2}+F_{2}^{2}+2 F_{1} F_{2} \cos 120^{0}} \\
\& =\sqrt{F_{1}^{2}+F_{2}^{2}-F_{1} F_{2}} \\
\& =\left(\frac{1}{4 \pi \epsilon_{0}} \frac{q^{2}}{l^{2}}\right) \sqrt{16+4-8} \\
\& =\frac{1}{4 \pi \epsilon_{0}}\left(\frac{2 \sqrt{3} q^{2}}{l^{2}}\right)
\end{aligned}
\] \\
(b) Net P.E. of the system
\[
\begin{aligned}
\& \quad=\frac{1}{4 \pi \epsilon_{0}} \cdot \frac{q^{2}}{l}[-4+2-8] \\
\& \quad=\frac{(-10)}{4 \pi \epsilon_{0}} \frac{q^{2}}{l} \\
\& \therefore \text { Work done }=\frac{10 q^{2}}{4 \pi \epsilon_{0} l}=\frac{5 q^{2}}{2 \pi \epsilon_{0} l}
\end{aligned}
\]
\end{tabular} \& 1/2 \& 3 \\
\hline 23 \& \begin{tabular}{l}
 \\
b) Reduction of power loss in long distance transmission 1 mark \\
c) Two values each displayed by teacher and Geeta \\
a) Transformer \\
Cause of power dissipation \\
i) Joule heating in the windings. \\
ii) Leakage of magnetic flux between the coils. \\
iii) Production of eddy currents in the core. \\
iv) Energy loss due to hysteresis. \\
[Any one / any other correct reason of power loss] \\
b) ac voltage can be stepped up to high value, which reduces the
\end{tabular} \& \(1 / 2\)

$1 / 2$ \& \\
\hline
\end{tabular}

	current in the line during transmission, hence the power $\operatorname{loss}\left(I^{2} R\right)$ is reduced considerably while such stepping up is not possible for direct current. [Also accept if the student explains this through a relevant example.] c) Teacher : Concerned, caring, ready to share knowledge . Geeta : Inquisitive, scientific temper, Good listener, keen learner (any other two values for the teacher and Geeta)	1 $\begin{aligned} & 1 / 2+1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$	4
24	a) Principle of ac generator $1 / 2$ mark working $1 / 2$ mark Labeled diagram 1 mark Derivation of the expression for induced emf $11 / 2$ mark b) Calculation of potential difference $11 / 2$ mark a) The AC Generator works on the principle of electromagnetic induction. when the magnetic flux through a coil changes, an emf is induced in it. As the coil rotates in magnetic field the effective area of the loop, (i.e. $A \cos \theta$) exposed to the magnetic field keeps on changing, hence magnetic flux changes and an emf is induced. When a coil is rotated with a constant angular speed ' ω ', the angle ' θ ' between the magnetic field vector \vec{B} and the area vector \vec{A}, of the coil at any instant ' t ' equals $\omega \mathrm{t}$; (assuming $\theta=O^{0}$ at $\mathrm{t}=\mathrm{o}$) As a result, the effective area of the coil exposed to the magnetic field changes with time ; The flux at any instant ' t ' is given by $\phi_{B}=N B A \cos \theta=\mathrm{NBA} \cos \omega t$ \therefore The induced emf $\mathrm{e}=-\mathrm{N} \frac{d \phi}{d t}$ $\begin{aligned} & =-\mathrm{NBA} \frac{d \phi}{d t}(\cos \omega t) \\ \mathrm{e} & =\mathrm{NBA} \omega \sin \omega t \end{aligned}$ b) Potential difference developed between the ends of the wings ' e ' $=B l v$	$1 / 2$ $1 / 2$ 1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	

		1	5
25	(a) Ray diagram to show the required image formation 1 mark (b) Derivation of mirror formula $21 / 2$ marks Expression for linear magnification $1 / 2$ mark (c) Two advantages of a reflecting telescope over a $1 / 2+1 / 2$ marks refracting telescope a) (b) In the above figure $\Delta \mathrm{BAP}$ and $\triangle \mathrm{B}^{\prime} \mathrm{A}^{\prime} \mathrm{P}$ are similar $\begin{equation*} \Rightarrow \frac{B A}{B^{\prime} A^{\prime}}=\frac{P A}{P A^{\prime}} \tag{i} \end{equation*}$ Similarly, $\quad \triangle \mathrm{MNF}$ and $\triangle \mathrm{B}^{\prime} \mathrm{A}^{\prime} F$ are similar $\begin{equation*} \Rightarrow \frac{M N}{B^{\prime} A^{\prime}}=\frac{N F}{F A^{\prime}} \tag{ii} \end{equation*}$ As MN = BA $\begin{aligned} & \mathrm{NF} \approx \mathrm{PF} \\ & \mathrm{FA}^{\prime}=\mathrm{PA}^{\prime}-\mathrm{PF} \end{aligned}$ \therefore equation (ii) takes the following form $\begin{equation*} \frac{B A}{B^{\prime} A^{\prime}}=\frac{P F}{P A^{\prime}-P F} \tag{iii} \end{equation*}$ Using equation (i) and (iii) $\frac{P A}{P A^{\prime}}=\frac{P F}{P A^{\prime}-P F}$ For the given figure, as per the sign convention, $\begin{aligned} & \mathrm{PA}=-\mathrm{u} \\ & \mathrm{PA}=-v \\ & \mathrm{PF}=-\mathrm{f} \end{aligned}$ $\begin{aligned} \Rightarrow \frac{-u}{-v} & =\frac{-f}{-v-(-f)} \\ \frac{u}{v} & =\frac{f}{v-f} \end{aligned}$	1	

uv -uf =vf
Dividing each term by uvf, we get

$$
\begin{gathered}
\frac{1}{f}-\frac{1}{v}=\frac{1}{u} \\
\Rightarrow \frac{1}{f}=\frac{1}{v}+\frac{1}{u}
\end{gathered}
$$

Linear magnification $=-v / u$, (alternatively $\left.\mathrm{m}=\frac{h_{i}}{h_{o}}\right)$
c) Advantages of reflecting telescope over refracting telescope
(i) Mechanical support is easier
(ii) Magnifying power is large
(iii) Resolving power is large
(iv) Spherical aberration is reduced
(v) Free from chromatic aberration (any two)
(a) Definition of wave front $1 / 2$ mark

Verification of laws of reflection 2 marks
(b) Explanation of the effect on the size and intensity of central maxima 1+1marks
(c) Explanation of the bright spot in the shadow of the obstacle
$1 / 2$ mark
(a)The wave front may be defined as a surface of constant phase. (Alternatively: The wave front is the locii of all points that are in the same phase)

Let speed of the wave in the medium be ' v '
Let the time taken by the wave front, to advance from point B to point
C is ' τ '
Hence $\mathrm{BC}=v \tau$
Let CE represent the reflected wave front
Distance $\mathrm{AE}=v \tau=B C$
$\triangle A E C$ and $\triangle A B C$ are congruent
$\therefore \angle B A C=\angle E C A$
$\Rightarrow \angle i=\angle r$
(b) Size of central maxima reduces to half,
,

1

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
\[
\left(\because \text { Size of central maxima }=\frac{2 \lambda D}{a}\right)
\] \\
Intensity increases. \\
This is because the amount of light, entering the slit, has increased and the area, over which it falls, decreases. \\
(Also accept if the student just writes that the intensity becomes four fold) \\
(c) This is because of diffraction of light. \\
[Alternatively: \\
Light gets diffracted by the tiny circular obstacle and reaches the centre of the shadow of the obstacle.] \\
[Alternatively: \\
There is a maxima, at the centre of the obstacle, in the diffraction pattern produced by it.]
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
\(1 / 2\)
\(1 / 2\)

$1 / 2$ \& 5 \\

\hline 26 \& | a) Definition of electric flux 1 mark
 Stating scalar/ vector $1 / 2 \mathrm{mark}$
 Gauss's Theorem $1 / 2 \mathrm{mark}$
 Derivation of the expression for electric flux 1 marks
 b) Explanation of change in electric flux 2 marks |
| :--- |
| a) Electric flux through a given surface is defined as the dot product of electric field and area vector over that surface. |
| Alternatively $\phi=\int_{s} \vec{E} \cdot \overrightarrow{d S}$ |
| Also accept |
| Electric flux, through a surface equals the surface integral of the electric field over that surface. |
| It is a scalar quantity |
| Constructing a cube of side ' d ' so that charge ' q ' gets placed within of this cube (Gaussian surface) |
| According to Gauss 's law the Electric flux $\begin{aligned} \varnothing & =\frac{\text { Charge enclosed }}{\varepsilon_{0}} \\ & =\frac{q}{\varepsilon_{0}}\end{aligned}$ |
| This is the total flux through all the six faces of the cube. |
| Hence electric flux through the square $\frac{1}{6} \times \frac{q}{\varepsilon_{0}}=\frac{q}{6 \varepsilon_{0}}$ |
| b) If the charge is moved to a distance d and the side of the square is | \& 1/2 \& \\

\hline
\end{tabular}

