BAAP OF ALL FORMULA LISTS

FOR IIT JEE

STRAIGHT LINE

Download Doubtnut Today

SL#	FORMULA
1	Distance Between Two Points $d=AB= x_2-x_1 = x_1-x_2 $
2	Dividing a Line Segment in the Ratio $\lambda x_0=rac{x_1+\lambda x_2}{1+\lambda}, \lambdarac{AC}{CB}, \lambda eq -1.$
3	Midpoint of a Line Segment $x_0=rac{x_1+x_2}{2}, \lambda=1.$
4	Distance Between Two Points $d=AB=\sqrt{\left(x_2-x_1 ight)^2+\left(y_2-y_1 ight)^2}$
5	Distance Between Two Points in Polar Coordinates $d=AB=\sqrt{r_1^2+r_2^2-2r_1r_2\cos(\phi_2-\phi_1)}$
6	Converting Rectangular Coordinates to Polar Coordinates $x=r\cos\phi, y=r\sin\psi.$
7	Converting Polar Coordinates to Rectangular Coordinates $r=\sqrt{x^2+y^2}, an\phi=rac{y}{x}.$
dowstnut पढ़ना हुआ आसान	DOWNLOAD DOUBTNUT TODAY FOR FREE PDFs & MORE
8	General Equation of a straight Line $Ax+By+C=0$
9	Normal Vector to a Straight Line The Vector $\overrightarrow{A}, \overrightarrow{B}$ is noramal to the line $Ax + By + C = 0$

10	Explicit Equation of a straight Line (Slope -Intercept Form) $y=kx+b$.
11	Gradient of a Line $k = an lpha = rac{y_2 - y_1}{x_2 - x_1}$
42	x_2-x_1 Equation of a line given a point and the Gradient $y=y_0+k(x-x_0), $ where k is the gradient,
12	$y=y_0+\kappa(x-x_0), ext{ where } \kappa$ is the gradient, $P(x_0,y_0)$ is a point on the line.
13	Equation of a Line That Passes Through Two Points
	$\left egin{array}{c} rac{y-y_1}{y_2-y_1} = rac{x-x_1}{x_2-x_1} ext{ or } \left egin{array}{ccc} x & y & 1 \ x_1 & y_1 & 1 \ x_2 & y_2 & 1 \end{array} ight = 0$
	Intercept Form
14	$rac{x}{a}+rac{y}{b}=1$
15	Normal Form
	$x\coseta+y\sineta-p=0$
ो dowstnut पढ़ना हुआ आसान	DOWNLOAD DOUBTNUT TODAY FOR FREE PDFs & MORE
	Point Direction Form
16	Point Direction Form $rac{x-x_1}{X}=rac{y-y_1}{Y}$,
16	
16 17	$rac{x-x_1}{X}=rac{y-y_1}{Y}$, where (X,Y) is the direction of the ine and $P_1(x_1,y_1)$ lies on the line. Vertical Line
	$rac{x-x_1}{X}=rac{y-y_1}{Y}$, where (X,Y) is the direction of the ine and $P_1(x_1,y_1)$ lies on the line. Vertical Line $x=a$
	$\frac{x-x_1}{X}=\frac{y-y_1}{Y},$ where (X,Y) is the direction of the ine and $P_1(x_1,y_1)$ lies on the line. Vertical Line $x=a$ Horizontal Line
17	$\frac{x-x_1}{X}=\frac{y-y_1}{Y},$ where (X,Y) is the direction of the ine and $P_1(x_1,y_1)$ lies on the line. Vertical Line $x=a$ Horizontal Line $y=b$
17	$\frac{x-x_1}{X}=\frac{y-y_1}{Y},$ where (X,Y) is the direction of the ine and $P_1(x_1,y_1)$ lies on the line. $Vertical\ {\rm Line}$ $x=a$ Horizontal Line
17	$\frac{x-x_1}{X}=\frac{y-y_1}{Y},$ where (X,Y) is the direction of the ine and $P_1(x_1,y_1)$ lies on the line. $\frac{x-x_1}{Y}=\frac{y-y_1}{Y},$ We tical Line $\frac{x-x_1}{Y}=\frac{y-y_1}{Y},$ Horizontal Line $\frac{y-y_1}{Y}=\frac{y-y_1}{Y},$ We to requation of a Straight Line $\frac{y-y_1}{Y}=\frac{y-y_1}{Y}$, where O is the origin of the coordinates, X is any variable point on the line,
17	$\frac{x-x_1}{X}=\frac{y-y_1}{Y},$ where (X,Y) is the direction of the ine and $P_1(x_1,y_1)$ lies on the line. $\frac{x-x_1}{Y}=\frac{y-y_1}{Y},$ Vertical Line $\frac{x-y_1}{Y}=\frac{y-y_1}{Y}$ Horizontal Line $y=b$ $\frac{y-y_1}{Y}=\frac{y-y_1}{Y}$ Vector equation of a Straight Line $\frac{y-y_1}{Y}=\frac{y-y_1}{Y}$, where O is the origin of the coordinates, $\frac{y-y_1}{Y}$ is the position vector of a known point A on the line,
17	$\frac{x-x_1}{X}=\frac{y-y_1}{Y},$ where (X,Y) is the direction of the ine and $P_1(x_1,y_1)$ lies on the line. $Vertical\ \text{Line}$ $x=a$ $Wertical\ \text{Line}$ $y=b$ $Vector\ \text{equation of a Straight Line}$ $\overrightarrow{r}=\overrightarrow{a}+t\overrightarrow{b}, \text{ where O is the origin of the coordinates,}$ X is any variable point on the line, $\overrightarrow{a} \text{ is the position vector of a known point A on the line,}$ $\overrightarrow{b} \text{ is a known vector of direction, parallel to the line, t is a parameter,}$
17	$\frac{x-x_1}{X}=\frac{y-y_1}{Y},$ where (X,Y) is the direction of the ine and $P_1(x_1,y_1)$ lies on the line. $\frac{x-x_1}{Y}=\frac{y-y_1}{Y},$ Vertical Line $\frac{x-y_1}{Y}=\frac{y-y_1}{Y}$ Horizontal Line $y=b$ $\frac{y-y_1}{Y}=\frac{y-y_1}{Y}$ Vector equation of a Straight Line $\frac{y-y_1}{Y}=\frac{y-y_1}{Y}$, where O is the origin of the coordinates, $\frac{y-y_1}{Y}$ is the position vector of a known point A on the line,

1	(a_1,a_2) are the coordinates of a known point on the line,
	(b_1,b_2) are the coordinates of a vector parallel to the line,
	t is a parameter.
	Distance From a Point To a Line
21	The distance from the point $P(a,b)$ to line $Ax+By+C=0$ is
21	$d=rac{ Aa+Bb+c }{\sqrt{A^2+B^2}}$
	Parallel Lines Two lines
	$y=k_1x+b_1 ext{ and } y=k_2x+b_2$ are parallel if
22	$k_1=k_2.$
	Two lines $A_1x+B_1y+C_1=0 { m and} A_2x+B_2y+C_2=0$ are parallel if
	$rac{A_1}{A_2}=rac{B_1}{B_2}.$
	Perpendicular Lines
	Two Lines
	$y=k_1x+b_1 ext{ and } y=k_2x+b_2$ are perpendicular if
23	$k_2=-rac{1}{k_1}$ or, equivalently, $k_1k_2=-1.$
	Two lines $A_1x+B_1y+C_1=0 ext{and} A_2x+B_2y+C_2=0$ perpendicular if
	$A_1 A_2 + B_1 B_2 = 0$
doustnut पढ़ना हुआ आसान	DOWNLOAD DOUBTNUT TODAY FOR FREE PDFs & MORE
	Angle Between Two Lines $ an\phi=rac{k_2-k_1}{\cos\phi}=rac{A_1A_2+B_1B_2}{\cos\phi}$
24	Angle Between Two Lines $ an\phi=rac{k_2-k_1}{1+k_1k_2}, \cos\phi=rac{A_1A_2+B_1B_2}{\sqrt{A_1^2+B_1^2}.\sqrt{A_2^2+B_2^2}}$
	Intersection of Two Lines
	If two lines $A_1x+B_1y+C_1=0$ and $A_2x+B_2y+C_2=0$ intersect, the intersection point has coordinates
25	$x_0 = rac{-C_1 B_2 + C_2 B_1}{A_1 B_2 - A_2 B_1}$,
	$y_0 = rac{-A_1C_2 + A_2C_1}{A_1B_2 - A_2B_1}$
or doublinut	Download Hundreds of such PDFs for FREE on Doubtnut App Today
	◆ Download Doubtnut to Ask Any Math Question By just a click
	✓ Get A Video Solution For Free in Seconds

- ◆ Doubtnut Has More Than 1 Lakh Video Solutions
- ✓ Free Video Solutions of NCERT, RD Sharma, RS Aggarwal, Cengage (G.Tewani), Resonance DPP, Allen, Bansal, FIITJEE, Akash, Narayana, VidyaMandir
- Download Doubtnut Today

