

JEE ADVANCED MATHS SOLUTIONS

YEAR 2010

Download Doubtnut Today

Ques No.	Question
1	JEE ADVANCED MATHS SOLUTIONS - 2010 Paper 1 Let $pandq$ be real numbers such that $p \neq 0, p^3 \neq q, andp^3 \neq -q$ If $\alpha and\beta$ are nonzero complex numbers satisfying $\alpha + \beta = -pand\alpha^2 + \beta^2 = q$, then a quadratic equation having $\alpha / \beta and\beta / \alpha$ as its roots is $(p^3 + q)x^2 - (p^3 + 2q)x + (p^3 + q) = 0$ $(p^3 + q)x^2 - (p^3 - 2q)x + (p^3 + q)x^2 - (5p^3 - 2q)x + (p^3 - q) = 0$ $(p^3 + q)x^2 - (5p^3 - 2q)x + (p^3 - q) = 0$ $(p^3 + q)x^2 - (5p^3 + 2q)x + (p^3 + q) = 0$ ($p^3 + q)x^2 - (5p^3 + 2q)x + (p^3 + q) = 0$ ($p^3 + q)x^2 - (5p^3 + 2q)x + (p^3 + q) = 0$ ($p^3 + q)x^2 - (5p^3 + 2q)x + (p^3 + q) = 0$

IFE ADVANCED MATHS SOLUTIONS - 2010 || Paper 1

2	Let f,g and h be real-valued functions defined on the interval $[0,1]$ by $f(x) = e^{x^2} + e^{-x^2}$, $g(x) = xe^{x^2} + e^{-x^2}$ and $h(x) = x^2e^{x^2} + e^{-x^2}$. If a, b and c
	 Watch Free Video Solution on Doubtnut
	JEE ADVANCED MATHS SOLUTIONS - 2010 Paper 1
3	If the angle A , $BandC$ of a triangle are in an arithmetic propression and if a , $bandc$ denote the lengths of the sides opposite to A , $BandC$ respectively, then the value of

	JEE ADVANCED MATHS SOLUTIONS - 2010 Paper 1 The number of 3×3 matrices A whose entries are either 0 or 1 and for which the
	 rhombus nor a rectangle Square Rectangle, but not a square Rhombus, but not a square Watch Free Video Solution on Doubtnut
6	Let P, Q, R and S be the points on the plane with position vectors -2i - j, 4i, 3i + 3jand - 3j + 2j, respectively. The quadrilateral $PQRS$ must be a Parallelogram, which is neither a

$$f(x) = \ln x + \int_0^x \sqrt{1 + \sin t} \, dt$$
. Then which of the following statement(s) is (are) true? A. f''(x) exists for all \in $(0, \infty)$. B. f'(x) exists for all $x \in (0, \infty)$ and f' is continuous on $(0, \infty)$, but not differentiable on $(0, \infty)$. C. there exists $\alpha > 1$ such that $|f'(x)| < |f(x)|$ for all $x \in$ (α, ∞) . D. there exists $\beta > 1$ such that $|f(x)| + |f'(x)| \le \beta$ for all $x \in$ $(0, \infty)$.
• Watch Free Video Solution on Doubtnut
$$JEE ADVANCED MATHS SOLUTIONS - 2010 || Paper 1$$

	The number of A in T_p , such that A is either symmetric or skew-symmetric or both, and det (A) divisible by p is
	Watch Free Video Solution on Doubtnut
	JEE ADVANCED MATHS SOLUTIONS - 2010 Paper 1 Let p be an odd prime number and T_p , be the following set of $2 imes 2$ matrices
13	

16	JEE ADVANCED MATHS SOLUTIONS - 2010 Paper 1 The circle $x^2 + y^2 - 8x = 0$ and hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$ l intersect at the points A and B. Equation of a common tangent with positive slope to the circle as well as to the hyperbola is • Watch Free Video Solution on Doubtnut
17	JEE ADVANCED MATHS SOLUTIONS - 2010 Paper 1 The circle $x^2 + y^2 - 8x = 0$ and hyperbola $\frac{x^2}{9} - \frac{y^2}{4} = 1$ intersect at points A and B. Then Equation of the circle with A B as its diameter is (b) Watch Free Video Solution on Doubtnut
18	JEE ADVANCED MATHS SOLUTIONS - 2010 Paper 1 Let f be a real-valued differentiable function on R (the set of all real numbers) such that $f(1) = 1$. If the $y - \in tercept$ of the tangent at any point $P(x, y)$ on the curve $y = f(x)$ is equal to the cube of the abscissa of P, then the value of $f(-3)$ is equal to \textcircled{O} Watch Free Video Solution on Doubtnut
40	JEE ADVANCED MATHS SOLUTIONS - 2010 Paper 1The number of values of θ in the interval $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ such that $\theta \neq n\frac{\pi}{5}$ for $n \in N$

JEE ADVANCED MATHS SOLUTIONS - 2010 || Paper 1

The line 2x + y = 1 is tangent to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. If this line passes through the point of intersection of the nearest directrix and the x-axis, then the

22

• Watch Free Video Solution on Doubtnut

eccentricity of the hyperbola is

 $\cos\left(\frac{2\pi}{3}\right)$ $+i\sin\left(rac{2\pi}{3}
ight)$ 25 . Then the number of distinct complex cos numbers z satisfying Δ $=egin{bmatrix} z+1 & \omega & \omega^2 \ \omega & z+\omega^2 & 1 \ \omega^2 & 1 & z+\omega \end{bmatrix}$ = 0is Watch Free Video Solution on Doubtnut JEE ADVANCED MATHS SOLUTIONS - 2010 || Paper 1 Let $S_k, k = 1, 2, , 100$, denotes thesum of the infinite geometric series whose first term s $\frac{k-1}{k!}$ and the common ratio is $\frac{1}{k}$, then the value of ${100^2\over 100!}$ + 26 $\sum_{k=1}^{100}ig(k^2-3k+1ig)S_k$ is Watch Free Video Solution on Doubtnut JEE ADVANCED MATHS SOLUTIONS - 2010 || Paper 2 Let f be a real-valued function defined on the inverval (-1,1) such that $e^{-x}f(x)=2+$ $\int_0^x \sqrt{t^4 + 1} dt,$ 27 for all, $x\in (-1,$ $1) and let f^{-1}$

	be the inverse function of $f_{.}$ Then $(f^{-1})'(2)$ is equal to 1 (b) $\frac{1}{3}$ (c) $\frac{1}{2}$ (d) $\frac{1}{e}$ Solution on Doubtnut

ि विवर्धनिया ह ुआ आसान	<complex-block><complex-block><complex-block><complex-block></complex-block></complex-block></complex-block></complex-block>
28	JEE ADVANCED MATHS SOLUTIONS - 2010 Paper 2 If P(A) = 0.4, P(B) = 0.48 and $P(A)\cap B = 0.16, then find the value of each of the following:O$ Watch Free Video Solution on Doubtnut
29	JEE ADVANCED MATHS SOLUTIONS - 2010 Paper 2 There are n AM's between 1 & 31 such that 7thmean : (n-1)thmean = 5:9 , then find the value of n. Solution on Doubtnut
	JEE ADVANCED MATHS SOLUTIONS - 2010 Paper 2 A signal which can be green or red with probability $\frac{4}{5}$ and $\frac{1}{5}$ respectively, is received by station A and then and 3 transmitted to station B. The probability of each

36	$a_{1} = 15, 27 - 2a_{2}$ $> 0 \text{ and } a_{k}$ $= 2a_{k-1} - a_{k-2}$ for $k = 3, 4, \dots, 11$ If $\frac{a1^{2} + a2^{2}, \dots, a11^{2}}{11}$ $= 90$ then find the value of $\frac{a_{1} + a_{2}, \dots, + a_{11}}{11}$ $\textcircled{\bullet} \text{ Watch Free Video Solution on Doubtnut}$
37	JEE ADVANCED MATHS SOLUTIONS - 2010 Paper 2 Consider a triangle <i>ABC</i> and let <i>a</i> , <i>bandc</i> denote the lengths of the sides opposite to vertices <i>A</i> , <i>B</i> , <i>andC</i> , respectively. Suppose $a = 6, b = 10$, and the area of triangle is $15\sqrt{3}$ If $\angle ACB$ is obtuse and if <i>r</i> denotes the radius of the incircle of the triangle, then the value of r^2 is Watch Free Video Solution on Doubtnut
38	JEE ADVANCED MATHS SOLUTIONS - 2010 Paper 2 Two parallel chords of a circle of radius 2 are at a distance. $\sqrt{3+1}$ apart. If the chord subtend angles $\frac{\pi}{k}$ and $\frac{2\pi}{k}$ at the center, where $k > 0$, then the value of [k] is • Watch Free Video Solution on Doubtnut
39	JEE ADVANCED MATHS SOLUTIONS - 2010 Paper 2 Consider the polynomial f $(x) = 1 + 2x + 3x^2$ $+ 4x^3$. Let s be the sum of all distinct real roots of $f(x)$ and let $t = s $. Solution on Doubtnut

	<image/> <section-header></section-header>
40	JEE ADVANCED MATHS SOLUTIONS - 2010 Paper 2Consider the polynomial f $(x) = 1 + 2x + 3x^2$ $+ 4x^3$. Let s be the sum of all distinct real roots of $f(x)$ and let $t = s $. $lacksquare$ Watch Free Video Solution on Doubtnut
41	JEE ADVANCED MATHS SOLUTIONS - 2010 Paper 2Consider the polynomial f $(x) = 1 + 2x + 3x^2$ + $4x^3$. Let s be the sum of all distinct real roots of $f(x)$ and let $t = s $. Watch Free Video Solution on Doubtnut
42	JEE ADVANCED MATHS SOLUTIONS - 2010 Paper 2 The set of points z $ z - i z = z + i z$ $ $ is contained in or equal to

Download Doubtnut Today

