

JEE ADVANCED MATHS SOLUTIONS

YEAR 2013

Download Doubtnut Today

Ques No.	Question
1	JEE ADVANCED MATHS SOLUTIONS - 2013 Paper 1 Perpendiculars are drawn from points on the line $\frac{x+2}{2} = \frac{y+1}{-1}$ $= \frac{z}{3}$ to the plane x + y + z=3 The feet of perpendiculars lie on the line • Watch Free Video Solution on Doubtnut
2	JEE ADVANCED MATHS SOLUTIONS - 2013 Paper 1 For a>b>c>0, the distance between (1,1) and point of intersection of the lines ax + by + c = 0 and bx + ay + c = 0 is less than $2\sqrt{2}$, Then • Watch Free Video Solution on Doubtnut
3	JEE ADVANCED MATHS SOLUTIONS - 2013 Paper 1 The area enclosed by the curves $y = \sin x$ $+ \cos x$ and y $= \cos x - \sin x $ over the interval $\left[0, \frac{\pi}{2}\right]$ • Watch Free Video Solution on Doubtnut

	<image/> <section-header></section-header>
4	JEE ADVANCED MATHS SOLUTIONS - 2013 Paper 1 Four person independently solve a certain problem correctly with probabilities $\frac{1}{2}, \frac{3}{4}, \frac{1}{4}, \frac{1}{8}$. Then the probability that he problem is solve correctly by at least one of them is $\frac{235}{256}$ b. $\frac{21}{256}$ c. $\frac{3}{256}$ d. $\frac{253}{256}$ Watch Free Video Solution on Doubtnut
5	JEE ADVANCED MATHS SOLUTIONS - 2013 Paper 1 The total number of ways in which 5 balls of different colours can be distributed among 3 persons so thai each person gets at least one ball is • Watch Free Video Solution on Doubtnut
6	JEE ADVANCED MATHS SOLUTIONS - 2013 Paper 1 Let complex numbers α and $\frac{1}{\alpha}$ lies on circles $(x - x_0)^2$ $+ (y - y_0)^2 = r^2$ and

 $\begin{array}{c} -2\hat{k}and\overrightarrow{S}Q = \hat{i} \\ -3\hat{j} - 4\hat{k} \\ \text{determine diagonals of a parallelogram} \\ PQRS, and\overrightarrow{P}T = \hat{i} \\ +2\hat{j} + 3\hat{k} \\ \text{be another vector. Then the volume of the parallelepiped determine by the vectors} \\ \overrightarrow{P}T, \overrightarrow{P}Q \text{ and } \overrightarrow{P}S \text{ is 5 b. } 20 \text{ c. } 10 \text{ d. } 30 \\ \hline \end{array}$

	(adjM)(adjN) = $adj(MN)$ for all invertible matrices $MandN_{.}$ • Watch Free Video Solution on Doubtnut
14	 JEE ADVANCED MATHS SOLUTIONS - 2013 Paper 1 A rectangular sheet of fixed perimeter with sides having their lengths in the ratio 8: 15 is converted into anopen rectangular box by folding after removing squares of equal area from all four corners. If the total area of removed squares is 100, the resulting box has maximum volume. Then the length of the sides of the rectangular sheet are 24 (b) 32 (c) 45 (d) 60 Watch Free Video Solution on Doubtnut
15	JEE ADVANCED MATHS SOLUTIONS - 2013 Paper 1Consider the set of eight vector $V = \left\{ a\hat{i} + b\hat{j} + c\hat{k}; \right.$ $a, bc \in \{-1, 1\}\right\}$.Three non-coplanar vectors can be chosen from V is 2^p ways. Then p isWatch Free Video Solution on Doubtnut
ो तिकडितियार पढ़ना हुआ आसान	View of the sector View o

J'doustnut

17	1224. If the smaller of het numbers on the removed cards is k , then $k - 20 = $ Watch Free Video Solution on Doubtnut
18	JEE ADVANCED MATHS SOLUTIONS - 2013 Paper 1 For a>b>c>0, the distance between (1,1) and point of intersection of the lines ax + by + c = 0 and bx + ay + c = 0 is less than $2\sqrt{2}$, Then • Watch Free Video Solution on Doubtnut
19	JEE ADVANCED MATHS SOLUTIONS - 2013 Paper 1A vertical line passing through the point $(h, 0)$ intersects the ellipse $\frac{x^2}{4} + \frac{y^2}{3} = 1$ at the points P and Q .Let the tangents to the ellipse at P and Q meet at R . If $\delta(h)$ A function of triangle δPQR , and $\delta_1 \max_{\frac{1}{2} \le h \le 1} \delta(h)$ A function of triangle δPQR , and $\delta_1 \max_{\frac{1}{2} \le h \le 1} \delta(h)$ A function of triangle δPQR , and $\delta_1 \max_{\frac{1}{2} \le h \le 1} \delta(h)$ A function of triangle δPQR , and $\delta_1 \max_{\frac{1}{2} \le h \le 1} \delta(h)$ A function of triangle δPQR , and $\delta_1 \max_{\frac{1}{2} \le h \le 1} \delta(h)$ A function of triangle δPQR , and $\delta_1 \max_{\frac{1}{2} \le h \le 1} \delta(h)$ A function of triangle δPQR , and $\delta_1 \max_{\frac{1}{2} \le h \le 1} \delta(h)$ A function of triangle δPQR , and $\delta_1 \max_{\frac{1}{2} \le h \le 1} \delta(h)$ A function of triangle δPQR , and $\delta_1 \max_{\frac{1}{2} \le h \le 1} \delta(h)$ A function of triangle δPQR <
Соссиса	Image: State of the state

20	For $a \in R$ (the set of all real numbers), $a \neq -1$), $(\lim_{n \to \infty})_{n \to \infty}$ $\left(\frac{1^a + 2^a + n^a}{(n+1)^{a-1}[(na+1)]} + (na+2) + \dots + (na+2) + \dots + (na+n)]\right)$ $= \frac{1}{60.}$ Then $a = (a)5$ (b) 7 (c) $\frac{-15}{2}$ (d) $\frac{-17}{2}$ • Watch Free Video Solution on Doubtnut
21	 JEE ADVANCED MATHS SOLUTIONS - 2013 Paper 2 Circle(s) touching x-axis at a distance 3 from the origin and having an intercept of length 2√7 on y-axis is (are) ♦ Watch Free Video Solution on Doubtnut
22	JEE ADVANCED MATHS SOLUTIONS - 2013 Paper 2 Circle(s) touching x-axis at a distance 3 from the origin and having an intercept of length $2\sqrt{7}$ on y-axis is (are) • Watch Free Video Solution on Doubtnut
23	JEE ADVANCED MATHS SOLUTIONS - 2013 Paper 2 In a triangle PQR, P is the largest angle and $\cos P = \frac{1}{3}$. Further the incircle of the triangle touches the sides PQ, QR and RP at N, L and M respectively, such that the lengths of PN, QL and RM are consecutive even integers. Then possible length(s) of the side(s) of the triangle is (are)

25	withe $p_{ij}=\omega^{i+j}$ Then $p^2 eq O, whe \cap = a.57$ b. 55 c. 58 d. 56 igodown Watch Free Video Solution on Doubtnut
	JEE ADVANCED MATHS SOLUTIONS - 2013 Paper 2
26	The function $f(x)=2 x $ + x+2 = x 2 -2 x has a local minimum or a local maximum at $x=-2$ (b) $-rac{2}{3}$ (c) 2 (d) $rac{2}{3}$

29	contains 2 white balls, 3 red balls and 4 black balls. A third box <i>B</i> ₃ , contains 3 white balls, 4 red balls and 5 black balls. Solution on Doubtnut
30	JEE ADVANCED MATHS SOLUTIONS - 2013 Paper 2 A box <i>B</i> ₁ , contains 1 white ball, 3 red balls and 2 black balls. Another box <i>B</i> ₂ , contains 2 white balls, 3 red balls and 4 black balls. A third box <i>B</i> ₃ , contains 3 white balls, 4 red balls and 5 black balls.

- Download Doubtnut to Ask Any Math Question By just a click
- **Get A Video Solution For Free in Seconds**
- **Provide and Anticipation Service Anticipation Anticipation Service Anticipation Anticipation Constitution**

Free Video Solutions of NCERT, RD Sharma, RS Aggarwal, Cengage (G.Tewani), Resonance DPP, Allen, Bansal, FIITJEE, Akash, Narayana, VidyaMandir

Download Doubtnut Today

o doustnut