

2

JEE ADVANCED MATHS SOLUTIONS

YEAR 2018

Download Doubtnut Today

Ques No.	Question
Ques No.	Question JEE ADVANCED MATHS SOLUTIONS - 2018 Paper 1 For a non-zero complex number z , let $arg(z)$ denote the principal argument with $\pi < arg(z) \le \pi$ Then, which of the following statement(s) is (are) FALSE? arg(-1, -i) $= \frac{\pi}{4}$, where $i = \sqrt{-1}$ (b) The function $f: R \to (-\pi, \pi]$, defined by f(t) = arg(-1+it) for all $t \in R$, is continuous at all points of \mathbb{R} , where $i = \sqrt{-1}$ (c) For any two non- zero complex numbers z_1 and z_2 , $arg\left(\frac{z_1}{z_2}\right) - arg(z_1)$ $+ arg(z_2)$ is an integer multiple of 2π (d) For any three given distinct complex numbers z_1 , z_2 and z_3 , the locus of the point z satisfying the condition $arg\left(\frac{(z-z_1)(z_2-z_3)}{(z-z_3)(z_2-z_1)}\right)$ $= \pi$
	 Nes on a straight line Watch Free Video Solution on Doubtnut
	JEE ADVANCED MATHS SOLUTIONS - 2018 Paper 1 In a triangle PQR , let $\angle PQR = 30o$ and the sides PQ and QR have lengths $10\sqrt{3}$ and 10, respectively. Then, which of the following statement(s) is (are) TRUE?

 $\angle QPR = 45o$ (b) The area of the triangle PQR is $25\sqrt{3}$ and $\angle QRP = 120o$ (c) The radius of the incircle of the triangle PQR is $10\sqrt{3} - 15$ (d) The area of the area of the dimensional of the triangle PQR is $10\sqrt{3} - 15$ (d) The area of the dimensional of the triangle PQR is 100 - 100 = 100.

5

$$= \left(e^{(f(x) - g(x))}\right)$$

$$)g'(x)$$
for all $x \in R$, and $f(1) = g(2) = 1$, then which of the following statement(s) is
(are) TRUE? $f(2) < 1 - (\log)_e 2$ (b) $f(2) > 1 - (\log)_e 2$ (c) $g(1) > 1 - (\log)_e 2$
(d) $g(1) < 1 - (\log)_e 2$
• Watch Free Video Solution on Doubtnut
JEE ADVANCED MATHS SOLUTIONS - 2018 || Paper 1
Let $f: [0, \infty) \to R$ be a continuous function such that

	Watch Free Video Solution on Doubtnut
9	JEE ADVANCED MATHS SOLUTIONS - 2018 Paper 1
	Let X be the set consisting of the first 2018 terms of the arithmetic progression 1, 6, 11, $,$ and Y be the set consisting of the first 2018 terms of the arithmetic progression 9, 16, 23, $$. Then, the number of elements in the set $X \cup Y$ is
	Watch Free Video Solution on Doubtnut
10	JEE ADVANCED MATHS SOLUTIONS - 2018 Paper 1
	The number of real solutions of the equation
	$\sin^{-1}igg(\sum_{i=1}^\infty x^{i+1}-x)$
	$\left \begin{array}{c} \sum\limits_{i=1}^{\infty} \left(rac{x}{2} ight)^i ight) = rac{\pi}{2}$
	$-\cos^{-1}$
	$\sum_{i=1}^\infty \Big(-rac{x}{2}\Big)^i-$
	$\left {\begin{array}{*{20}c} {\sum\limits_{i = 1}^\infty {{\left({{ - x} ight)^i } } } } } ight. ight.$
	lying in the interval $\left(-\frac{1}{2},\frac{1}{2}\right)$ is (Here, the inverse trigonometric function
	$x = \sin^{-1}x$ and $\cos^{-1}x$ assume values in $\left[rac{\pi}{2},rac{\pi}{2} ight]$ and $[0, \ \pi]$, respectively.)
	Watch Free Video Solution on Doubtnut
	JEE ADVANCED MATHS SOLUTIONS - 2018 Paper 1
	For each positive integer n , let
	$y_n = rac{1}{n} ig((n+1)(n$

11 +2)n+n^{$\frac{1}{n}$} For $x \in R$ let [x] be the greatest integer less than or equal to x. If $(\lim_{n \to \infty} y_n = L$, then the value of [L] is _____. • Watch Free Video Solution on Doubtnut

JEE ADVANCED MATHS SOLUTIONS - 2018 || Paper 1A farmer F_1 has a land in the shape of a triangle with vertices at P(0, 0), Q(1, 1)and R(2, 0). From this land, a neighbouring farmer F_2 takes away the region whichlies between the side PQ and a curve of the form $y = x^n$ (n > 1). If the area of theregion taken away by the farmer F_2 is exactly 30% of the area of PQR, then thevalue of n is _____. \bigcirc Watch Free Video Solution on DoubtnutJEE ADVANCED MATHS SOLUTIONS - 2018 || Paper 1

There are five students S_1, S_2, S_3, S_4 and S_5 in a music class and for them there are five seats R_1 , R_2 , R_3 , R_4 and R_5 arranged in a row, where initially the seat R_i is allotted to the student $S_i, \ i=1, \ 2, \ 3, \ 4,$ 5 . But, on the examination day, the five students are randomly allotted five seats. The probability that, on the examination day, the student S_1 gets the previously allotted seat R_1 , and NONE of the remaining students gets the seat previously allotted to him/her is $\frac{3}{40}$ (b) $\frac{1}{8}$ (c) $\frac{7}{40}$ (d) $\frac{1}{5}$

Watch Free Video Solution on Doubtnut

17

JEE ADVANCED MATHS SOLUTIONS - 2018 || Paper 1

PARAGRAPH A There are five students S_1 , S_2 , S_3 , S_4 and S_5 in a music class and for them there are five seats R_1 , R_2 , R_3 , R_4 and R_5 arranged in a row, where initially the seat R_i is allotted to the student S_i , i = 1, 2, 3, 4,

18

5

. But, on the examination day, the five students are randomly allotted five seats. For i = 1, 2, 3, 4, let T_i denote the event that the students S_i and S_{i+1} do NOT sit adjacent to each other on the day of the examination. Then, the probability of the event $T_1 \cap T_2 \cap T_3 \cap T_4$ is $\frac{1}{15}$ (b) $\frac{1}{10}$ (c) $\frac{7}{60}$ (d) $\frac{1}{5}$ Watch Free Video Solution on Doubtnut

JEE ADVANCED MATHS SOLUTIONS - 2018 || Paper 2

For any positive integer n, define $f_n \colon (0, \infty) \to R$ as $f_n(x) = \sum_{j=1}^n \tan^{-1} \left(\frac{1}{1 + (x+j)(x+j)} \right)^{-1}$ for all $x \in (0, \infty)$. Here, the inverse trigonometric function $\tan^{-1} x$ assumes values in $\left(-\frac{\pi}{2}, \frac{\pi}{2} \right)$. Then, which of the following statement(s) is (are) TRUE? $\sum_{j=1}^{5} \tan^2(f_j(0)) = 55$ (b) $\sum_{j=1}^{10} (1 + fj)$ '(0))sec²(f_j(0))

19

21

$$x + y + 3z = b_1, 5x$$

+ $2y + 6z = b_2$
and $-2x - y - 3z = b_3$ (c)
 $-x + 2y - 5z = b_1,$
 $2x - 4y + 10z = b_2$
and $x - 2y + 5z = b_3$ (d)
 $x + 2y + 5z = b_1,$
 $2x + 3z = b_2$
and $x + 4y - 5z = b_3$

Watch Free Video Solution on Doubtnut

JEE ADVANCED MATHS SOLUTIONS - 2018 || Paper 2

Consider two straight lines, each of which is tangent to both the circle $x^2 + y^2 = \frac{1}{2}$ and the parabola $y^2 = 4x$. Let these lines intersect at the point Q. Consider the ellipse whose center is at the origin O(0, 0) and whose semi-major axis is OQ. If the length of the minor axis of this ellipse is $\sqrt{2}$, then which of the following statement(s) is (are) TRUE? For the ellipse, the eccentricity is $\frac{1}{\sqrt{2}}$ and the length of the latus rectum is 1 (b) For the ellipse, the eccentricity is $\frac{1}{2}$ and the length of the latus rectum is $\frac{1}{2}$ (c) The area of the region bounded by the ellipse between the lines $x = \frac{1}{\sqrt{2}}$ and x = 1 is $\frac{1}{4\sqrt{2}}(\pi - 2)$ (d) The area of the region bounded by the ellipse between the lines where the lines $x = \frac{1}{\sqrt{2}}$ and x = 1 is $\frac{1}{\sqrt{2}}(\pi - 2)$ (d) The area of the region bounded by the ellipse between the lines $x = \frac{1}{\sqrt{2}}$ and x = 1 is $\frac{1}{\sqrt{2}}$ and x = 1 is $\frac{1}{\sqrt{2}}(\pi - 2)$ (d) The area of the region bounded by the ellipse between the lines $x = \frac{1}{\sqrt{2}}$ and x = 1 is $\frac{1}{\sqrt{2}}(\pi - 2)$ (d) The area of the region bounded by the ellipse between the lines $x = \frac{1}{\sqrt{2}}$ and x = 1 is $\frac{1}{\sqrt{2}}(\pi - 2)$ (d) The area of the region bounded by the ellipse between the lines $x = \frac{1}{\sqrt{2}}$ and x = 1 is $\frac{1}{\sqrt{2}}(\pi - 2)$ (d) The area of the region bounded by the ellipse between the lines $x = \frac{1}{\sqrt{2}}$ and x = 1 is $\frac{1}{\sqrt{2}}(\pi - 2)$

Watch Free Video Solution on Doubtnut

JEE ADVANCED MATHS SOLUTIONS - 2018 || Paper 2

Let $s, \ t, \ r$ be non-zero complex numbers and L be the set of solutions $z=x+iy \ \left(x, \ y\in
ight)$

 $\mathbb{R}, \;\; i=\sqrt{-1}ig)$

of the equation sz + tz + r = 0, where z = x - iy. Then, which of the following statement(s) is (are) TRUE? If L has exactly one element, then $|s| \neq |t|$ (b) If |s| = |t|, then L has infinitely many elements (c) The number of elements in $\ln n\{z: |z - 1 + i| = 5\}$

is at most 2 (d) If L has more than one element, then L has infinitely many elements

• Watch Free Video Solution on Doubtnut

22

23

24	$ \begin{array}{l} (\\ \lim \\)_{t \to x} \frac{f(x) \sin t - f(x) \sin x}{t - x} \\ = \sin^2 x \\ \text{for all } x \in (0, \ \pi) \ \text{. If } f\left(\frac{\pi}{6}\right) = \ -\frac{\pi}{12} \ \text{, then which of the following statement(s) is} \\ (\text{are) TRUE? } f\left(\frac{\pi}{4}\right) = \frac{\pi}{4\sqrt{2}} \ \text{(b) } f(x) < \frac{x^4}{6} - x^2 \ \text{for all } x \in (0, \ \pi) \ \text{(c) There} \\ \text{exists } \alpha \in (0, \ \pi) \ \text{such that } f'(\alpha) = 0 \ \text{(d) } f\left(\frac{\pi}{2}\right) + f\left(\frac{\pi}{2}\right) = 0 \end{array} $
	Watch Free Video Solution on Doubtnut
25	JEE ADVANCED MATHS SOLUTIONS - 2018 Paper 2 The value of the integral $\int_{0}^{\frac{1}{2}} \frac{1+\sqrt{3}}{((x+1)^{2}(1-x)^{6})^{\frac{1}{4}}} dx$ is Solution on Doubtnut
26	JEE ADVANCED MATHS SOLUTIONS - 2018 Paper 2 Let <i>P</i> be a matrix of order 3×3 such that all the entries in <i>P</i> are from the set $\{-1, 0, 1\}$. Then, the maximum possible value of the determinant of <i>P</i> is • Watch Free Video Solution on Doubtnut
27	JEE ADVANCED MATHS SOLUTIONS - 2018 Paper 2 Let <i>X</i> be a set with exactly 5 elements and <i>Y</i> be a set with exactly 7 elements. If α is the number of one-one function from <i>X</i> to <i>Y</i> and β is the number of onto function from <i>Y</i> to <i>X</i> , then the value of $\frac{1}{5!}(\beta - \alpha)$ is • Watch Free Video Solution on Doubtnut

उ विवर्धनियां पढ़ना हुआ आसान	<complex-block><complex-block><complex-block><complex-block><image/></complex-block></complex-block></complex-block></complex-block>
28	JEE ADVANCED MATHS SOLUTIONS - 2018 Paper 2 Let $f: R \to R$ be a differentiable function with $f(0) = 0$. If $y = f(x)$ satisfies the differential equation $\frac{dy}{dx}$ $= \frac{1}{(2+5x)(5x-2)}$, then the value of $(\lim_{x \to \infty} f(x)$ is
29	JEE ADVANCED MATHS SOLUTIONS - 2018 Paper 2 Let $f: R \to R$ be a differentiable function with $f(0) = 1$ and satisfying the equation $f(x + y)$ $= f(x)f'(y)$ $+ f'(x)f(y)$ for all $x, y \in R$. Then, the value of $(\log)_e(f(4))$ is \bigcirc Watch Free Video Solution on Doubtnut
	JEE ADVANCED MATHS SOLUTIONS - 2018 Paper 2

Let P be a point in the first octant, whose image Q in the plane x+y=3 (that is, the line segment PQ is perpendicular to the plane x+y=3 and the mid-point of PQ lies in the plane x + y = 3) lies on the z-axis. Let the distance of P from the x-30 axis be 5. If R is the image of P in the xy-plane, then the length of PR is _ Watch Free Video Solution on Doubtnut JEE ADVANCED MATHS SOLUTIONS - 2018 || Paper 2 Consider the cube in the first octant with sides OP,OQ and OR of length 1, along the x-axis, y-axis and z-axis, respectively, where O(0, 0, 0) is the origin. Let $S\left(\frac{1}{2},\frac{1}{2},\frac{1}{2}\right)$ be the centre of the cube and T be the vertex of the cube opposite to

$$\begin{split} E_2 &= \left\{ x \in E_1 \\ :\sin^{-1} \\ \left((\log)_e \left(\frac{x}{x-1} \right) \right) \\ \text{is a real number} . \text{ Here, the inverse trigonometric function } \sin^{-1} x \text{ assumes values} \\ \text{in } \left[\frac{\pi}{2}, \frac{\pi}{2} \right] \text{ Let } f: E_1 \to R \text{ be the function defined by} \\ f(x) \\ &= (\log)_e \left(\frac{x}{x-1} \right) \\ \text{and } g: E_2 \to R \text{ be the function defined by} \\ g(x) \\ &= \sin^{-1} \\ \left((\log)_e \left(\frac{x}{x-1} \right) \right) \\ \text{LIST-I LIST-II P. The range of } f \text{ is 1.} \\ \left(-\infty, \frac{1}{1-e} \right] \\ \cup \left[\frac{e}{e-1}, \infty \right) \\ \text{Q. The range of } g \text{ contains 2. } (0, 1) \text{ R. The domain of } f \text{ contains 3. } \left[\frac{1}{2}, \frac{1}{2} \right] \text{ S. The} \\ \text{domain of } g \text{ is 4.} (-\infty, 0) \cup (0, \infty) \text{ 5. } \left(-\infty, \frac{e}{e-1} \right] \\ \text{f.} \\ (-\infty, 0) \\ \cup \left(\frac{1}{2}, \frac{e}{e-1} \right] \\ \text{The correct option is:} \\ P \to 4; \to 2; R \\ \to 1; S \to 1 \\ (0) \\ P \to 3; Q \to 3; R \\ \to 6; S \to 5 \\ (1) \\ P \to 4; Q \to 2; R \\ \to 1; S \to 6 \\ (d) \\ P \to 4; Q \to 2; R \\ \to 1; S \to 6 \\ (d) \\ P \to 4; Q \to 2; R \\ (d) \\ P \to 4; Q \to 3; R \\ \end{pmatrix}$$

formed such that the committee has at least 2 members, and having an equal number of boys and girls. (iii) Let α_3 be the total number of ways in which the committee can be formed such that the committee has 5 members, at least 2 of them being girls. (iv) Let α_4 be the total number of ways in which the committee can be formed such that the committee has 4 members, having at least 2 girls and such that both M_1 and G_1 are NOT in the committee together. LIST-I LIST-II P. The value of α_1 is 1. 136 Q. The value of α_2 is 2. 189 R. The value of α_3 is 3. 192 S. The value of α_4 is 4. 200 5. 381 6. 461 The correct option is: 34 P
ightarrow 4; Q
ightarrow 6; Rightarrow 2; S
ightarrow 1(b) $\stackrel{ ext{(b)}}{P} o 1; Q o 4; R$ $egin{array}{lll}
ightarrow 2;S
ightarrow 3 \ (c) \ P
ightarrow 4;Q
ightarrow 6;R \end{array}$ $egin{array}{l}
ightarrow 5; S
ightarrow 2 \ (d) \ P
ightarrow 4; Q
ightarrow 2; R \end{array}$ ightarrow 3; S
ightarrow 1Watch Free Video Solution on Doubtnut JEE ADVANCED MATHS SOLUTIONS - 2018 || Paper 2 Let $H\!:\!rac{x^2}{a^2}-rac{y^2}{b^2}=1$, where a>b>0 , be a hyperbola in the xy -plane whose conjugate axis LM subtends an angle of 60o at one of its vertices N . Let the area of the triangle LMN be $4\sqrt{3}$. LIST-I LIST-II P. The length of the conjugate axis of H is 1. 8 Q. The eccentricity of H is 2. $\frac{\sqrt{4}}{3}$ R. The distance between the foci of H is 3. $\frac{2}{\sqrt{2}}$ S. The length of the latus rectum of *H* is 4. 4 The correct option is $\check{P}
ightarrow 4; \hspace{0.2cm} Q
ightarrow 2; \hspace{0.2cm} R$ $ightarrow 1; \hspace{0.2cm} S
ightarrow 3$ 35 (b) $\stackrel{(\mathsf{D})}{P}
ightarrow 4; \ Q
ightarrow 3; \ R$ $egin{array}{c}
ightarrow 1; \hspace{0.2cm} S
ightarrow 2 \ (c) \ P
ightarrow 4; \hspace{0.2cm} Q
ightarrow 1; \hspace{0.2cm} R \end{array}$ $ightarrow 3; \hspace{0.2cm} S
ightarrow 2$

$$\begin{split} &\left[\sin\left((\log)_e(x+2)\right)\right]\\ \text{, where, for }t\in R\text{, }[t] \text{ denotes the greatest integer less than or equal to }t\text{ , (iv)}\\ &f_4(x)\\ &= \left\{x^2\sin\left(\frac{1}{x}\right)\\ &\text{if }x\neq 00\\ &\text{if }x=0\\ \text{. LIST-I LIST-II P. The function }f_1\text{ is 1. NOT continuous at }x=0\text{ Q. The function }f_2\\ &\text{is 2. continuous at }x=0\text{ and NOT R. The function }f_2\text{ is differentiable at }x=0\text{ S.}\\ &\text{The function }f_2\text{ is 3. differentiable at }x=0\text{ and its is NOT continuous at }x=0\text{ 4.}\\ &\text{differentiable at }x=0\text{ and its derivative is continuous at }x=0\text{ The correct option is} \end{split}$$

