FREE NCERT SOLUTIONS

CLASS - 10

INTRODUCTION TO TRIGONOMETRY

Download Doubtnut Now

EXERCISE 8.1 - Question No. 1

In $\triangle ABC$, right-angled at B, $AB = 24 \ cm, \ BC = 7 \ cm$.

Determine: (i) sin A, cos A (ii) sin C, cos C

Watch Free Video Solution on Doubtnut Now (

EXERCISE 8.1 - Question No. 2

Find $\tan P - \cot R$.

If $\sin A = \frac{3}{4}$, calculate $\cos A$ and $\tan A$.

Watch Free Video Solution on Doubtnut Now (

EXERCISE 8.1 - Question No. 4

Given $15 \cot A = 8$, find sin A and sec A.

Watch Free Video Solution on Doubtnut Now

EXERCISE 8.1 - Question No. 5

Given $sec\theta = \frac{13}{12}$, calculate all other trigonometric ratios.

If $\angle A$ and $\angle B$ are acute angles such that $\cos A = \cos B$. then show

that $\angle A = \angle B$.

Watch Free Video Solution on Doubtnut Now (

EXERCISE 8.1 - Question No. 7

If
$$\cot \theta = \frac{7}{8}$$
, evaluate: (i) $\frac{(1 + \sin \theta)(1 - \sin \theta)}{(1 + \cos \theta)(1 - \cos \theta)}$ (ii) $\cot^2 \theta$

Watch Free Video Solution on Doubtnut Now (

EXERCISE 8.1 - Question No. 8

If
$$3\cot A=4$$
 , check whether $rac{1- an^2 A}{1+ an^2 A}=\cos^2 A-\sin^2 A$ or

not.

Watch Free Video Solution on Doubtnut Now (>

EXERCISE 8.1 - Question No. 9

In triangle ABC, right-angled at B. if $\tan A = \frac{1}{\sqrt{3}}$ find the value of: (i) $\sin A \cos C + \cos A \sin C(ii) \quad \cos A \cos C \sin A \sin C$

Watch Free Video Solution on Doubtnut Now (

EXERCISE 8.1 - Question No. 10

In ΔPQR , right angled at Q, PR + QR = 25cm and PQ = 5cm.

Determine the values of $\sin P$, $\cos P$ and $\tan P$.

Watch Free Video Solution on Doubtnut Now (

EXERCISE 8.1 - Question No. 11

State whether the following are true or false. Justify your answer. (i)

The value of tan A always less than 1. (ii) sec $A = \frac{12}{5}$ for some value

of angle A (iii) cos A is the abbreviation used for the cosecant of angle

A. (iv) cot A is the product of cot and A (v)sin $\theta = \frac{4}{3}$ for some angle θ

Watch Free Video Solution on Doubtnut Now (

EXERCISE 8.2 - Question No. 1

Evaluate the following (i) $\sin 60^{\cos 30}$ ^ + $\sin 30^{\cos 60}$ (ii)

 $\frac{2\tan^2 45^+ \cos^2 30^{-\sin^2} 260 \text{ (iii)} \frac{\cos 45^{\square}}{\sec 30^+ \cos 230^{\square}} \text{ (iv)}}{\frac{\sin 30^+ \tan 45^{-c} \csc 60^{\square}}{\sec 30^+ \cos 60^+ \cot 45^{\square}} \text{ (v)} \frac{5\cos^2 60^+ 4\sec^2 30^{-\tan^2} 245^{\square}}{\sin^2 30^+ \cos^2 30^{\square}}}$

Choose the correct option and justify your choice : (i) $\frac{2 \tan 30^{\Box}}{1 + \tan^2 30^{\Box}}$ (a) $\sin 60^b \cos 60^c tan 60^d \sin 30$

Watch Free Video Solution on Doubtnut Now (

EXERCISE 8.2 - Question No. 3

If
$$\tan(A+B) = \sqrt{3}$$
 and $\tan(A-B) = \frac{1}{\sqrt{3}}$;

 $0^{\leq}A + B \leq 90^{a} \leq B$, find A and B.

Watch Free Video Solution on Doubtnut Now

EXERCISE 8.2 - Question No. 4

State whether the following are true or false. Justify your answer. (i)

 $\sin(A+B) = \sin A + \sin B$. (ii) The value of $\sin heta$ increases as heta

increases. (iii) The value of $\cos \theta$ increases as θ increases. (iv)

 $\sin \theta = \cos \theta$ for all v

EXERCISE 8.3 - Question No. 1

Evaluate : (i) $\frac{\sin 18o}{\cos 72o}$ (ii) $\frac{\tan 26o}{\cot 64o}$ (iii) $\cos 48o - \sin 42o$ (iv) $\cos ec 31o \sec 59o$

Watch Free Video Solution on Doubtnut Now (

EXERCISE 8.3 - Question No. 2

Show that :

(i) $\tan 480 \tan 230 \tan 420 \tan 670 = 1(ii) \cos 380 \cos 52$

Watch Free Video Solution on Doubtnut Now (

EXERCISE 8.3 - Question No. 3

If
$$tan2A = cot(A - 18^{\Box})$$
, where 2A is an acute angle, find the

value of A.

Watch Free Video Solution on Doubtnut Now

EXERCISE 8.3 - Question No. 4

If $tanA = \cot B$, prove that A + B = 90o

If
$$sec4A = \cos ec \Big(A - 20^{\Box} \Big)$$
 , where 4A is an acute angle, find the

value of A.

Watch Free Video Solution on Doubtnut Now

EXERCISE 8.3 - Question No. 6

If A, B and C are interior angles of a triangle ABC, then show that

$$\sin\!\left(\frac{B+C}{2}\right) = \frac{\cos A}{2}$$

Watch Free Video Solution on Doubtnut Now (

EXERCISE 8.3 - Question No. 7

Express $s \in 67 \oplus \cos 75o$ in terms of trigonometric ratios of angles

between 0o and 45o.

EXERCISE 8.4 - Question No. 1

Express the trigonometric ratios sin A, sec A and tan A in terms of cot

A.

EXERCISE 8.4 - Question No. 2

Write all the other trigonometric ratios of $\angle A$ in terms of sec A.

Evaluate: (i) $\frac{\sin^2 63 + \sin^2 27}{\cos^2 17 + \cos^2 73}$ (ii) $\sin 25 \ \cos 65^+ \cos 25 \sin 65$

Watch Free Video Solution on Doubtnut Now

EXERCISE 8.4 - Question No. 4

Choose the correct option. Justify your choice. (i)

 $9\sec^2 A - 9\tan^2 A =$ (a) 1 (b) 9 (c) 8 (d) 0

Watch Free Video Solution on Doubtnut Now (>)

EXERCISE 8.4 - Question No. 5

angles for which the expressions are defined.

 $\frac{\cos A - \sin A + 1}{\cos A + \sin A - 1} = \cos ecA + \cot A$

Watch Free Video Solution on Doubtnut Now (

EXERCISE 8.4 - Question No. 5

Prove the following identity, where the angles involved are acute

angles for which the expressions are defined. (iv)

 $rac{1+ \sec A}{\sec A} = rac{\sin^2 A}{1-\cos A}$

Watch Free Video Solution on Doubtnut Now (

EXERCISE 8.4 - Question No. 5

angles for which the expressions are defined. (ix)

 $(cosec \ A \ \sin A)(\sec A - \cos A) = rac{1}{ an A + \cot A} \ [ext{Hint}: ext{Simplify}$

LHS and RHS separately]

Watch Free Video Solution on Doubtnut Now

EXERCISE 8.4 - Question No. 5

Prove the following identity, where the angles involved are acute

angles for which the expressions are defined. (viii)

 $\left(\sin A + \cos e c A
ight)^2 + \left(\cos A + \sec A
ight)^2 = 7 + an^2 A + \cot^2 A$

angles for which the expressions are defined. (x)

$$\left(rac{1+ an^2A}{1+ ext{cot}^2A}
ight) = \left(rac{1- an A}{1- ext{cot}\,A}
ight)^2 = an^2A$$

Watch Free Video Solution on Doubtnut Now (

EXERCISE 8.4 - Question No. 5

Prove the following identity, where the angles involved are acute

angles for which the expressions are defined. (iii)

 $rac{ an heta}{1-\cot heta}+rac{\cot heta}{1- an heta}=1+\sec heta\cos ec heta$

Watch Free Video Solution on Doubtnut Now (

EXERCISE 8.4 - Question No. 5

angles for which the expressions are defined. (ii)

 $\frac{\cos A}{1+\sin A}+\frac{1+\sin A}{\cos A}=2\sec A$

Watch Free Video Solution on Doubtnut Now (

EXERCISE 8.4 - Question No. 5

Prove the following identity, where the angles involved are acute

angles for which the expressions are defined. (vii)

 $rac{\sin heta-2\sin^3 heta}{2\cos^3 heta-\cos heta}= an heta$

Watch Free Video Solution on Doubtnut Now (

EXERCISE 8.4 - Question No. 5

angles for which the expressions are defined. (i)

 $\left(cosec heta - \cot heta
ight)^2 = rac{1 - \cos heta}{1 + \cos heta}$

Watch Free Video Solution on Doubtnut Now (

EXERCISE 8.4 - Question No. 5

Prove the following identity, where the angles involved are acute

angles for which the expressions are defined. (vi)

 $\sqrt{rac{1+\sin A}{1-\sin A}}=\sec A+ an A$

Watch Free Video Solution on Doubtnut Now (

SOLVED EXAMPLES - Question No. 1

Given $\tan A = \frac{4}{3}$, find the other trigonometric ratios of the angle A.

Watch Free Video Solution on Doubtnut Now

SOLVED EXAMPLES - Question No. 2

If $\angle B$ and $\angle Q$ are acute angles such that $\sin B = \sin Q$. Then prove

that $\angle B = \angle Q$.

Watch Free Video Solution on Doubtnut Now (

SOLVED EXAMPLES - Question No. 3

Consider $\triangle ACB$, right-angled at C, in which AB = 29 units,

BC = 21 units and $\angle ABC = \theta$. Determine the values of (i)

 $\cos 2\theta + \sin 2\theta$ (ii) $\cos 2\theta \sin 2\theta$

Watch Free Video Solution on Doubtnut Now (>

SOLVED EXAMPLES - Question No. 4

In a right triangle ABC right-angled at B. if tanA = 1, then verify

that $2 \sin A \cos A = 1$.

Watch Free Video Solution on Doubtnut Now (

SOLVED EXAMPLES - Question No. 5

In $\triangle OPQ$, right-angled at P, $OP = 7 \ cm$ and $OQ - PQ = 1 \ cm$

Determine the values of $\sin Q$ and $\cos Q$.

In $\triangle ABC$, right-angled at B, $AB = 5 \ cm$ and $\angle ACB = 30$ (see

figure). Determine the lengths of the sides BC and AC.

Watch Free Video Solution on Doubtnut Now

SOLVED EXAMPLES - Question No. 7

In ΔPQR , right-angled at Q (see figure),

 $PQ = 3 \ cm \ and \ PR = 6 \ cm$. Determine $\angle QPR$ and $\angle PRQ$

Watch Free Video Solution on Doubtnut Now (>

SOLVED EXAMPLES - Question No. 8

$${
m If}\sin(A-B)=rac{1}{2}, \cos(A+B)=rac{1}{2}, \ 0^{\,<}(A+B)\leq 90 \ , A>B$$

, find A and B.

SOLVED EXAMPLES - Question No. 10

If
$$\sin 3A = \cos \left(A - 26^{\Box} \right)$$
, where 3A is an acute angle, find the

value of A.

SOLVED EXAMPLES - Question No. 11

Express $\cot 85^{\circ} + \cos 75^{\circ}$ in terms of trigonometric ratios of angles

between 0^o and 45^o

Watch Free Video Solution on Doubtnut Now (

SOLVED EXAMPLES - Question No. 12

Express the ratios cosA, tanA and sec A in terms of sin A.

Watch Free Video Solution on Doubtnut Now (>

SOLVED EXAMPLES - Question No. 13

Prove that secA(1 - sin A)(secA + tanA) = 1

Prove that $rac{\cot A - \cos A}{\cot A + \cos A} = rac{cosecA - 1}{cosecA + 1}$.

Watch Free Video Solution on Doubtnut Now

SOLVED EXAMPLES - Question No. 15

Prove that $\frac{\sin \theta - \cos \theta + 1}{\sin \theta + \cos \theta - 1} = \frac{1}{\sec \theta - \tan \theta}$, using the identity $\sec^2 \theta = 1 + \tan^2 \theta$

FREE Mein Milega Maths ke har question ka video solution :)

Bas Question ki photo khicho.. Turant video solution paayo!!

DOWNLOAD NOW!