FREE NCERT SOLUTIONS

CLASS - 10

POLYNOMIALS

Download Doubtnut Now

EXERCISE 2.1 - Question No. 1

The graphs of y = p(x) are given in Figure below, for some polynomials p(x). Find the number of zeroes of p(x), in each case.

Watch Free Video Solution on Doubtnut Now (>

EXERCISE 2.2 - Question No. 1

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients $t^2-15\,$

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients $4u^2+8u$

Watch Free Video Solution on Doubtnut Now (▶

EXERCISE 2.2 - Question No. 1

Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients $3x^2-x-4$

Find the zeroes of the following quadratic polynomials and verify

the relationship between the zeroes and the coefficients

$$x^2 - 2x - 8$$

Watch Free Video Solution on Doubtnut Now (▶

EXERCISE 2.2 - Question No. 1

Find the zeroes of the following quadratic polynomials and verify

the relationship between the zeroes and the coefficients

$$6x^2 - 3 - 7x$$

Watch Free Video Solution on Doubtnut Now (▶

EXERCISE 2.2 - Question No. 1

Find the zeroes of the following quadratic polynomials and verify

the relationship between the zeroes and the coefficients

$$4s^2 - 4s + 1$$

Watch Free Video Solution on Doubtnut Now (▶

EXERCISE 2.2 - Question No. 1

Find the zeroes of the following quadratic polynomials and verify

the relationship between the zeroes and the coefficients. - (i)

$$x^2-2x-8$$
 (ii) $4s^2-4s+1$ (iii) $6x^2-3-7x$ (iv) $4u^2+8u$

$$(v)t^2 - 15$$
 (vi) $3x^2 - x - 4$

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. (iv) 1, 1 (v) $-\frac{1}{4}$, $\frac{1}{4}$ (vi)

Watch Free Video Solution on Doubtnut Now (▶

EXERCISE 2.2 - Question No. 1

4, 1

Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. (i) $\frac{1}{4}$, -1 (ii) $\sqrt{2}$, $\frac{1}{3}$ (iii) 0, $\sqrt{5}$ (iv) 1, 1 (v) $-\frac{1}{4}$, $\frac{1}{4}$ (vi) 4, 1

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following :

$$p(x) = x^3 - 3x^2 + 5x - 3, g(x) = x^2 - 2$$

Watch Free Video Solution on Doubtnut Now (▶

EXERCISE 2.3 - Question No. 1

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following :

$$p(x) = x^4 - 3x^2 + 4x + 5, g(x) = x^2 + 1 - x$$

Divide the polynomial p(x) by the polynomial g(x) and find the quotient and remainder in each of the following :

$$p(x) = x^4 - 5x + 6$$
 , $g(x) = 2 - x^2$

Watch Free Video Solution on Doubtnut Now (▶

EXERCISE 2.3 - Question No. 2

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial: t^2-3 , $2t^4+3t^3-2t^2-9t-12$

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial: $x^3 - 3x + 1$, $x^5 - 4x^3 + x^2 + 3x + 1$

Watch Free Video Solution on Doubtnut Now (▶

EXERCISE 2.3 - Question No. 2

Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by the first polynomial: $x^2 + 3x + 1$, $3x^4 + 5x^3 - 7x^2 + 2x + 2$

Obtain all other zeroes of $3x^4+6x^3-2x^2-10x-5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

Watch Free Video Solution on Doubtnut Now (▶

EXERCISE 2.3 - Question No. 4

On dividing x^3-3x^2+x+2 by a polynomial the quotient and remainder were x-2 and -2x+4 , respectively. Find g(x).

Watch Free Video Solution on Doubtnut Now (▶

EXERCISE 2.3 - Question No. 5

Give examples of polynomials p(x), g(x), g(x) and r(x), which satisfy the division algorithm and (i) degp(x) = degq(x) (ii) degq(x) = degq(x) (iii) degq(x) = 0

Watch Free Video Solution on Doubtnut Now (▶

EXERCISE 2.4 - Question No. 1

Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case: (i) $2x^3 + x^2 - 5x + 2$; $\frac{1}{2}$, 1, -2 (ii) $x^3 - 4x^2 + 5x - 2$; 2 , 1,\

Find a cubic polynomial with the sum, sum of the product of its zeroes taken two at a time, and the product of its zeroes as 2, 7, 14 respectively.

Watch Free Video Solution on Doubtnut Now (▶

EXERCISE 2.4 - Question No. 3

If the zeroes of the polynomial x^3-3x^2+x+1 are $a-b,\,a,\,a+b$, find a and b.

If two zeroes of the polynomial $x^4-6x^3-26x^2+138x-35$ are $2\pm\sqrt{3}$, find other zeroes.

Watch Free Video Solution on Doubtnut Now (▶

EXERCISE 2.4 - Question No. 5

If the polynomial $x^4-6x^3+16x^2-25x+10$ is divided by another polynomial x^2-2x+k , the remainder copies out to be x+a . find k and a.

SOLVED EXAMPLES - Question No. 1

Look at the graphs in Figure given below. Each is the graph of y=p(x), where p(x) is a polynomial. For each of the graphs, find the number of zeroes of p(x).

Watch Free Video Solution on Doubtnut Now (▶

SOLVED EXAMPLES - Question No. 2

Find the zeroes of the quadratic polynomial $x^2 + 7x + 10$, and verify the relationship between the zeroes and the coefficients.

SOLVED EXAMPLES - Question No. 3

Find the zeroes of the polynomial x^2-3 and verify the relationship between the zeroes and the coefficients.

Watch Free Video Solution on Doubtnut Now (▶

SOLVED EXAMPLES - Question No. 4

Find a quadratic polynomial, the sum and product of whose zeroes are -3 and 2, respectively.

Watch Free Video Solution on Doubtnut Now (▶

SOLVED EXAMPLES - Question No. 5

Verify that 3, 1, $-\frac{1}{3}$ are the zeroes of the cubic polynomial

 $p(x) = 3x^3 - 5x^2 - 11x - 3$, and then verify the relationship

between the zeroes and the coefficients.

Watch Free Video Solution on Doubtnut Now (>

SOLVED EXAMPLES - Question No. 6

Divide $2x^2 + 3x + 1$ by x + 2

Watch Free Video Solution on Doubtnut Now (▶

SOLVED EXAMPLES - Question No. 7

Divide $3x^3 + x^2 + 2x + 5$ by $1 + 2x + x^2$.

SOLVED EXAMPLES - Question No. 8

Divide $3x^2 + x^3 - 3x + 5$ by $x - 1 - x^2$, and verify the division algorithm.

Watch Free Video Solution on Doubtnut Now (▶

SOLVED EXAMPLES - Question No. 9

Find all the zeroes of $2x^4-3x^3-3x^2+6x-2$, if you know that two of its zeroes are $\sqrt{2}$ and $-\sqrt{2}$.

FREE Mein Milega Maths ke har question ka video solution:)

Bas Question ki photo khicho..

Turant video solution paayo!!

DOWNLOAD NOW!