

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS

Chapter 10. VECTOR ALGEBRA

Download Doubtnut Today

	_
Ques No.	Question
1 - 10390	Find the projection of $\stackrel{\rightarrow}{b}+\stackrel{\rightarrow}{c}$ on $\stackrel{\rightarrow}{a}$ where $\overrightarrow{a}=7\hat{i}-\stackrel{\rightarrow}{j}+8\hat{k}, \stackrel{\rightarrow}{b}=\hat{i}+2\hat{j}+3\hat{k}$ and $\overrightarrow{c}=\hat{j}+4\hat{k}$
	● Click to watch Free Video Solution of this question on Doubtnut
	CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA
2 - 10403	Find the resultant of two velocities 6 km/hr and $6~\sqrt{2}$ km/hr
	inclined to one another at an angle of 135.
	● Click to watch Free Video Solution of this question on Doubtnut
	CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA
3 - 10404	Two forces act at a point and are such that if the direction of one
	is reversed, the resultant is turned through a right angle. Show
	that the two forces must be equal in magnitude.
	● Click to watch Free Video Solution of this question on Doubtnut
dowstnut	

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

Find the projection of $\overset{
ightarrow}{b}+\overset{
ightarrow}{c}$ on $\overset{
ightarrow}{a}$ where

$$\overrightarrow{a}=2\hat{i}-2\hat{j}+\hat{k},\ \overrightarrow{b}=\hat{i}+2\hat{j}-2\hat{k}$$
 and $\overrightarrow{c}=2\hat{i}-\hat{j}+4\hat{k}$

● Click to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

Find the value of λ which makes the vectors $\overrightarrow{a}, \ \overrightarrow{b}$ and \overrightarrow{c}

5 - 10524

coplanar, where
$$\overrightarrow{a}=2\hat{i}-\hat{j}+\hat{k},\ \overrightarrow{b}=\hat{i}+2\hat{j}-3\hat{k}$$

and
$$\overrightarrow{c}ackslash = 3\hat{i} - \lambda\,\hat{j} + 5\hat{k}$$

● Click to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

6 - 10526

Find the resultant of two velocities 4 m/sec and 6 m/sec inclined to one another at an angle of 120°.

⑤ Click to watch Free Video Solution of this question on Doubtnut

Show that the points (1,0), (6,0), (0,0) are collinear.

● Click to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

For what value λ are the vectors

8 - 10566

9 - 10571

10 - 10572

$$\overrightarrow{a}=2\hat{i}+\ \lambda\hat{j}+\hat{k}\ and\ \overrightarrow{b}=\hat{i}-\ 2\hat{j}+3\hat{k}$$
 perpendicular to

each other?

Olick to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

If $\overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=0$ and $\left|\overrightarrow{a}\right|=3,\ \left|\overrightarrow{b}\right|=5$ and $\left|\overrightarrow{c}\right|=7$,

show that the angle between \overrightarrow{a} and \overrightarrow{b} is 60^0 .

Olick to watch Free Video Solution of this question on Doubtnut

If $\overrightarrow{a}=\hat{i}+\hat{j}+\hat{k}$ and $\overrightarrow{b}=\hat{j}-\hat{k}$, find a vector \overrightarrow{c} such that $\overrightarrow{a} \ge \overrightarrow{c}=\overrightarrow{b}$ and $\overrightarrow{a} \ge \overrightarrow{c}=3$

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

11 - 10578

Find a unit vector in the direction of $\stackrel{
ightarrow}{a}=3\hat{i}-2\hat{j}+6\hat{k}$

Olick to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

Find the angle between the vectors

12 - 10579

$$\overrightarrow{a} = \hat{i} - \hat{j} + \hat{k} \ and \ \overrightarrow{b} = \hat{i} + \hat{j} - \hat{k}$$

Olick to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

13 - 10605

Write a vector of magnitude 9 units in the direction of vector

$$-2\hat{i}+\hat{j}+2\hat{k}$$

♠ Click to watch Free Video Solution of this question on Doubtnut

14 - 10628

If vectors $\overrightarrow{a}=2\hat{i}+2\hat{j}+3\hat{k},\ \overrightarrow{b}=-\hat{i}+2\hat{j}+\hat{k}$ and

 $\overrightarrow{c}=3\hat{i}+\hat{j}$ are such that $\overrightarrow{a}+\lambda\stackrel{
ightarrow}{b}$ is perpendicular to $\overrightarrow{c},$

then find the value of λ

OClick to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

Find the shortest distance between the lines:

15 - 10629

$$\overrightarrow{r}=6\hat{i}+2\hat{j}+2\hat{k}+\lambda\left(\hat{i}-2\hat{j}+2\hat{k}
ight)$$
 and $\overrightarrow{r}=-4\hat{i}-\hat{k}+\mu\left(3\hat{i}-2\hat{j}-2\hat{k}
ight)$

Olick to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10, VECTOR ALGEBRA

Let $\overrightarrow{a}=\hat{i}-\hat{j},\ \overrightarrow{b}=3\hat{j}-\hat{k}$ and $\overrightarrow{c}=7\hat{i}-\hat{k}$. Find a

16 - 10634

vector \overrightarrow{d} which is perpendicular to both \widehat{a} and \overrightarrow{b} , and \overrightarrow{c} .

$$\overrightarrow{d}=1$$

● Click to watch Free Video Solution of this question on Doubtnut

17 - 10649	CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA
	If $\overrightarrow{a}=x\hat{i}+2\hat{j}-z\hat{k}$ and $\overrightarrow{b}=3\hat{i}-y\hat{j}+\hat{k}$ are two equal
	vectors, then write the value of $x+y+z_{\cdot}$
	● Click to watch Free Video Solution of this question on Doubtnut
	CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA
18 - 10655	If a unit vector \overrightarrow{a} makes angles $\dfrac{\pi}{3}$ with \hat{i} , $\dfrac{\pi}{4}$ with \hat{j} and an
	acute angle $ heta$ with \hat{k} , then find the value of $ heta$.
	© Click to watch Free Video Solution of this question on Doubtnut
	CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA
19 - 10656	Find $\left \overrightarrow{x} ight $, if for a unit vector
	$\left \overrightarrow{a},\;\left(\overrightarrow{x}-\overrightarrow{a} ight)\cdot\left(\overrightarrow{x}+\overrightarrow{a} ight)=15.$
	● Click to watch Free Video Solution of this question on Doubtnut
ो doust nut पढ़ना हुआ आसान	FREE VIDEOS OF PREVIOUS YEAR EXAM PAPERS JEE ADVANCED JEE MAINS 12 BOARD 10 BOARDS Made by Codoubtnut सफ आपके लिए
20 - 10665	CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

P and Q are two points with position vectors $3\overrightarrow{a}-2\overrightarrow{b}$ and $\overrightarrow{a}+\overrightarrow{b}$ respectively. Write the position vector of a point R which divides the line segment PQ in the ratio 2:1 externally.

● Click to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

If $\overrightarrow{a} imes \overrightarrow{b} = \overrightarrow{c} imes \overrightarrow{d}$ and $\overrightarrow{a} imes \overrightarrow{c} = \overrightarrow{b} imes \overrightarrow{d}$ show

that $\overrightarrow{a}-\overrightarrow{d}$ is parallel to $\overrightarrow{b}-\overrightarrow{c},$ where $\overrightarrow{a}\neq\overrightarrow{d}$ and \rightarrow

$$\overrightarrow{b}
eq \overrightarrow{c}$$

● Click to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

Write the vector equation of the following line:

22 - 10696

21 - 10691

$$\frac{x-5}{3} = \frac{y+4}{7} = \frac{6-z}{2}$$

Olick to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three vectors such that $\left|\overrightarrow{a}\right|=5,\ \left|\overrightarrow{b}\right|=12$

and $\left|\overrightarrow{c}\right|=13, \text{ and } \overrightarrow{a}+\overrightarrow{b}+\overrightarrow{c}=\overrightarrow{O}, \text{ find the value of }$

$$\overrightarrow{a} \overrightarrow{b} + \overrightarrow{b} \overrightarrow{c} + \overrightarrow{c} + \overrightarrow{a}$$

Olick to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

24 - 10728

Find the value of $p,\,$ if $\left(2\hat{i}\,+6\hat{j}\,+27\hat{k}
ight)$ x ($\hat{i}\,+3\hat{j}\,+p\hat{k}
ight)=\overrightarrow{0}$

Olick to watch Free Video Solution of this question on Doubtnut

25 - 10750

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

Find
$$\lambda$$
 if $\left(2\hat{i}+6\hat{j}+14\hat{k}
ight) imes\left(\hat{i}-\lambda\hat{j}+7\hat{k}
ight)=\overrightarrow{0}$

Olick to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

If $\overrightarrow{lpha}=3\hat{i}+4\hat{j}+5\hat{k}$ and $\overrightarrow{eta}=2\hat{i}+\hat{j}-4\hat{k},$ then express \rightarrow

26 - 10761

 $\overrightarrow{\beta}$ in the form $\overrightarrow{\beta}_1 + \overrightarrow{\beta}_2$, where $\overrightarrow{\beta}_1$ is parallel to $\overrightarrow{\alpha}$ and $\overrightarrow{\beta}$ is perpendicular to $\overrightarrow{\alpha}$.

Olick to watch Free Video Solution of this question on Doubtnut

Using vectors, find the area of the triangle with vertices A (1, 1,

2), B (2, 3, 5) and C (1, 5, 5).

O Click to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

28 - 10818

For what value of a the vectors $2\hat{i} - 3\hat{j} + 4\hat{k}$ and

 $a\hat{i}+6\hat{j}-8\hat{k}$ are collinear?

Click to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

Let $\overrightarrow{a}=\hat{i}+4\hat{j}+2\hat{k},\ \overrightarrow{b}=3\hat{i}-2\hat{j}+7\hat{k}$ and

29 - 10825

 $\overrightarrow{c}=2\hat{i}-\hat{j}+4\hat{k}$ Find a vector \overrightarrow{p} which is perpendicular to

both \overrightarrow{a} and \overrightarrow{b} and \overrightarrow{p} . $\overrightarrow{c}=18$.

Olick to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

30 - 10826

Find the coordinates of the point where the line through the points A (3, 4, 1) and B (5, 1, 6) crosses the XY-plane. OClick to watch Free Video Solution of this question on Doubtnut CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10, VECTOR ALGEBRA integrate 31 - 10842 Olick to watch Free Video Solution of this question on Doubtnut A= { 6, 7, 8 } B= { 5, 6, 7, 8, 9} ACY & BCY **CLICK TO** CLICK ON **LEARN** OTHER TAG **#SUBSETS** CONCEPT USED TO TO FIND & **SOLVE** WATCH #BOARDS #Intermediate #MICROC... MORE **THIS** RELATED QUESTION **Practice Questions** & doubtnut What is Power Sets? (Explain with exam, CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA Find the projection of \overrightarrow{a} on \overrightarrow{b} , if \overrightarrow{a} . $\overrightarrow{b}=8$ and 32 - 10843 $\stackrel{
ightarrow}{b}=2\hat{i}+6\hat{j}+3\hat{k}.$ O Click to watch Free Video Solution of this question on Doubtnut CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA Write the cartesian equation of the following line given in vector 33 - 10850 form : $\overrightarrow{r}=2\hat{i}+\hat{j}-4\hat{k}+\lambda\left(\hat{i}-\hat{j}-\hat{k}
ight)$

OClick to watch Free Video Solution of this question on Doubtnut

Find $\left|\overrightarrow{x}\right|$, if for a unit vector $\overrightarrow{a},\ \left(\overrightarrow{x}-\overrightarrow{a}\right)\overrightarrow{x}+\overrightarrow{a}=15$

Olick to watch Free Video Solution of this question on Doubtnut

37 - 10862

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

I
$$\left|\overrightarrow{a}\right|=\sqrt{3}\left|\overrightarrow{b}\right|=2$$
 and \overrightarrow{a} , $\overrightarrow{b}=\sqrt{3,}$ find the angle between \overrightarrow{a} and \overrightarrow{b}

Olick to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

Find λ when the projection of $\overrightarrow{a}=\lambda \hat{i}+\hat{j}+4\hat{k}$ on

39 - 10878

$$\overrightarrow{b}=2\hat{i}+6\hat{j}+3\hat{k}$$
 is 4 units.

Olick to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

Write the vector equation of the line given by

40 - 10880

$$\frac{x-5}{3} = \frac{y+4}{7} = \frac{z-6}{2}$$

⊙ Click to watch Free Video Solution of this question on Doubtnut

41 - 10890

If \overrightarrow{a} and \overrightarrow{b} are two vectors such that $\left|\overrightarrow{a}+\overrightarrow{b}\right|=\left|\overrightarrow{a}\right|$, then prove that vector $2\overrightarrow{a}+\overrightarrow{b}$ is perpendicular to vector \overrightarrow{b} OClick to watch Free Video Solution of this question on Doubtnut CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA If \overrightarrow{p} is a unit vector and $\left(\overrightarrow{x}-\overrightarrow{p}\right)$. $\left(\overrightarrow{x}+\overrightarrow{p}\right)=80$, then 42 - 10896 find $|\overrightarrow{x}|$ Olick to watch Free Video Solution of this question on Doubtnut CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA Find the vector equation of the line passing through the point (1,2,3) and parallel to the planes $\overrightarrow{r}\,\hat{i}-\hat{j}+2\hat{k}=5$ and 43 - 10939 $\overrightarrow{r}3\hat{i} + \hat{j} + \hat{k} = 6.$ Olick to watch Free Video Solution of this guestion on Doubtnut Click Get an Picture of QUESTION

44 - 10943

	If $\overrightarrow{a}=\widehat{a}=\widehat{i}-\ \widehat{j}+7\widehat{k}$ and $\overrightarrow{b}=5\widehat{j}-\ \widehat{j}+\lambda\widehat{k}$, then find
	the value of $\lambda, \ $ so that $\overrightarrow{a}+\overrightarrow{b}$ and $\overrightarrow{a}-\overrightarrow{b}$ are perpendicular
	vectors.
	● Click to watch Free Video Solution of this question on Doubtnut
	CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA
	The points A(4, 5, 10), B(2, 3, 4) and C (1, 2,-1) are three
45 - 10955	vertices of a parallelogram ABCD. Find the vector equations of
	the sides AB and BC and also find the coordinates of point D.
	© Click to watch Free Video Solution of this question on Doubtnut
	CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA
	The scalar product of the vector $\hat{i} + \hat{j} + \hat{k}$ with the unit vector
46 - 10969	along the sum of vectors $2\hat{i}+4\hat{j}-5\hat{k}$. and $\lambda\hat{i}+2\hat{j}+3\hat{k}$
	is equal to one. Find the value of λ .
	● Click to watch Free Video Solution of this question on Doubtnut
	CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA
	If \overrightarrow{a} is a unit vector and $\left(\overrightarrow{x}-\overrightarrow{a}\right)\overrightarrow{x}+\overrightarrow{a}=24$, then write
47 - 10975	the value of $\left \overrightarrow{x} \right $
	© Click to watch Free Video Solution of this question on Doubtnut
dowstnut	

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

For any three vectors \overrightarrow{a} , \overrightarrow{b} and \overrightarrow{c} , write the value of the

48 - 10981

following:

$$\overrightarrow{a} imes \left(\overrightarrow{b} + \overrightarrow{c}
ight) + \overrightarrow{b} imes \left(\overrightarrow{c} + \overrightarrow{a}
ight) + \overrightarrow{c} imes \left(\overrightarrow{a} + \overrightarrow{b}
ight)$$

▶ Click to watch Free Video Solution of this question on Doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

Let
$$\overrightarrow{a} = \hat{i} + 4\hat{j} + 2\hat{k}, \ \ \overrightarrow{b} = 3\hat{i} - 2\hat{j} + 7\hat{k}$$
 and

..

 $\overrightarrow{c}=2\hat{i}-\hat{j}+4\hat{k}$. Find a vector \overrightarrow{d} which is perpendicular to

both \overrightarrow{a} and \overrightarrow{b} and \overrightarrow{c} . \overrightarrow{d} =18.

● Click to watch Free Video Solution of this question on Doubtnut

50 - 11001

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

If
$$\overrightarrow{a}=\hat{i}+\hat{j}+\hat{k},\ \ \overrightarrow{b}=4\hat{i}-\ 2\hat{j}+3\hat{k}$$
 and

 $\overrightarrow{c}=\hat{i}-2\hat{j}+\hat{k}, ext{ find a vector of magnitude 6 units which is}$

	parallel to the vector $2\overrightarrow{a}-\overrightarrow{b}+3\overrightarrow{c}$.
	● Click to watch Free Video Solution of this question on Doubtnut
	CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA
51 - 11018	Write the projection of the vector $\hat{i} - \hat{j}$ on the vector $\hat{i} + \hat{j}$
ो doust nut पढ़ना हुआ आसान	Select CHAPTER Select CHAPTER
	CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA
	Find a unit vector perpendicular to each of the vector $\overrightarrow{a} + \overrightarrow{b}$
52 - 11028	and $\overrightarrow{a}-\overrightarrow{b}$, where $\overrightarrow{a}=3\hat{i}+2\hat{j}+2\hat{k}$ and
	$igg \stackrel{ ightarrow}{b}=\hat{i}+2\hat{j}-2\hat{k}$
	© Click to watch Free Video Solution of this question on Doubtnut
53 - 11046	CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA
	Write the value of the are of the parallelogram determined by
	the vectors $2\hat{i}$ and $3\hat{j}$.
	© Click to watch Free Video Solution of this question on Doubtnut
54 - 11047	CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

	Write the value of $(\hat{i} imes \hat{j})\dot{\hat{k}} + (\hat{j} imes \hat{k}).\hat{i}$
	CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA
	Show that the lines $\overrightarrow{r}=3\hat{i}+2\hat{j}-4\hat{k}+\lambda\Big(\hat{i}+2\hat{j}+2\hat{k}\Big);$
55 - 11060	$\overrightarrow{r}=5\hat{i}-2\hat{j}+\mu\Big(3\hat{i}+2\hat{j}+6\hat{k}\Big)$; are intersecting. Hence
	find their point of intersection.
ो doust nut पढ़ना हुआ आसान	FREE VIDEOS OF PREVIOUS YEAR EXAM PAPERS JEE ADVANCED JEE MAINS 12 BOARD 10 BOARDS Made by & doubtnut Rt 好 आपके लिए
56 - 11068 57 - 11083	If \overrightarrow{a} , \overrightarrow{b} , \overrightarrow{c} are three vectors such that \overrightarrow{a} , $\overrightarrow{b} = \overrightarrow{a}$, \overrightarrow{c} and $\overrightarrow{a} \times \overrightarrow{b} = \overrightarrow{a} \times \overrightarrow{c}$, $\overrightarrow{a} \neq 0$, then show that $\overrightarrow{b} = \overrightarrow{c}$.

-	
	Find the position vector of a point R which divides the line
	joining two points P and Q whose position vectors are
	$\left(2\stackrel{ ightarrow}{\overrightarrow{a}}+\stackrel{ ightarrow}{\overrightarrow{b}} ight)$ and $(\stackrel{ ightarrow}{\overrightarrow{a}}-3\stackrel{ ightarrow}{\overrightarrow{b}} ight)$ respectively, externally in the
ı	ratio 1:2.Also, show that P is the mid-point of the line segment
	RQ_{\cdot}
	● Click to watch Free Video Solution of this question on Doubtnut
	CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA
	The magnitude of the vector product of the vector $\hat{i} + \hat{j} + \hat{k}$
58 - 11104	with a unit vector along the sum of vectors $2\hat{i} + 4\hat{j} - 5\hat{k}$ and
	$\lambda i + 2 \hat{j} + 3 \hat{k}$ is equal to $\sqrt{2}$. Find the value of λ .
	© Click to watch Free Video Solution of this question on Doubtnut
	CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA
59 - 11107	Find the scalar components of the vector $\overrightarrow{A}B$ with initial point
	A(2,1) and terminal point $B(-5,7)$
	© Click to watch Free Video Solution of this question on Doubtnut
doustnut	

d'doubtnut

CLASS 12 BOARDS: MOST IMPORTANT QUESTIONS - Chapter 10. VECTOR ALGEBRA

If $\left|\overrightarrow{a}\right|=8,\left|\overrightarrow{b}\right|=3$ and $\left|\overrightarrow{a}x\overrightarrow{b}\right|=12,$ find the angle between \overrightarrow{a} and \overrightarrow{b}

60 - 13234

- O Click to watch Free Video Solution of this question on Doubtnut
- ◆ Download Doubtnut to Ask Any Math Question By just a click
- ✓ Get A Video Solution For Free in Seconds
- ◆ Doubtnut Has More Than 1 Lakh Video Solutions
- ₱ Free Video Solutions of NCERT, RD Sharma, RS Aggarwal, Cengage (G.Tewani), Resonance DPP, Allen, Bansal, FIITJEE, Akash, Narayana, VidyaMandir
- Download Doubtnut Today

doustnut