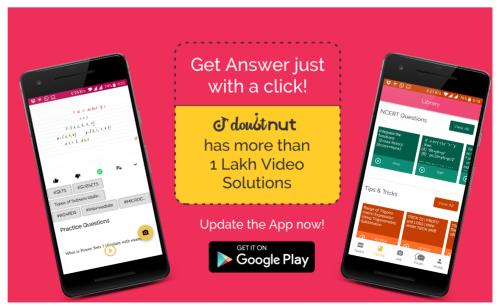
CLASS 12 PRE-BOARDS SPECIAL

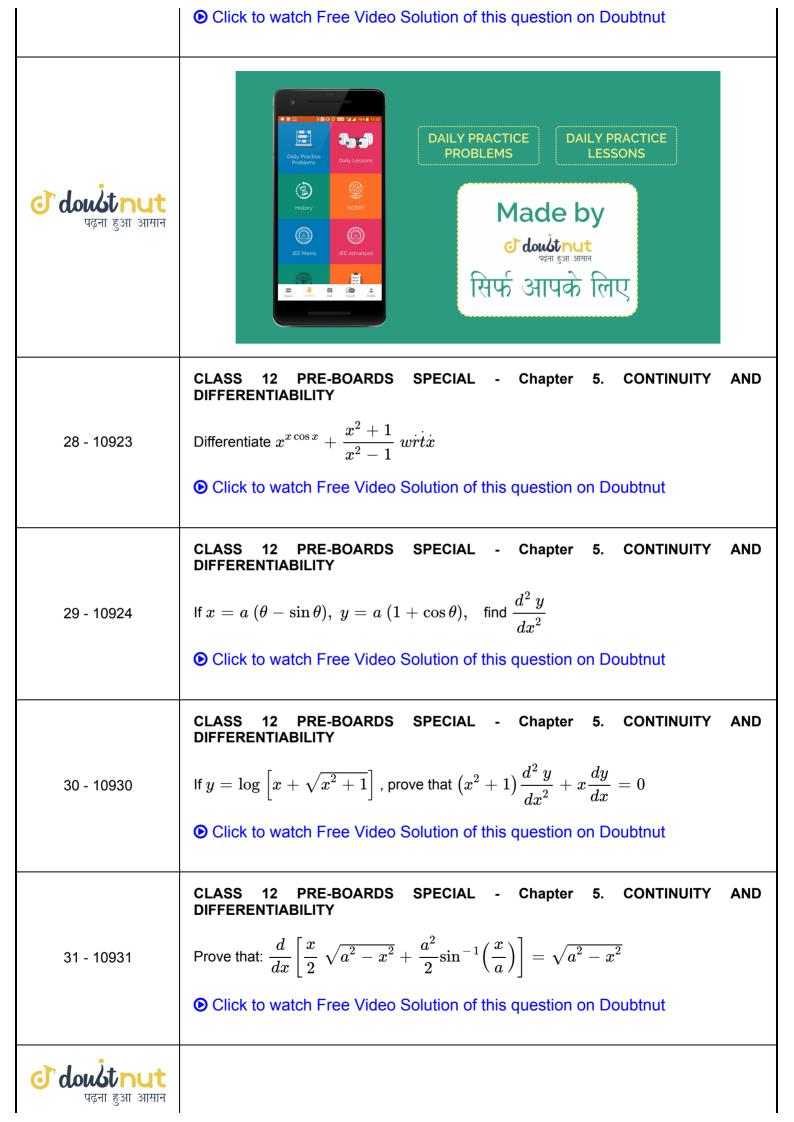

Chapter 5. CONTINUITY DIFFERENTIABILITY

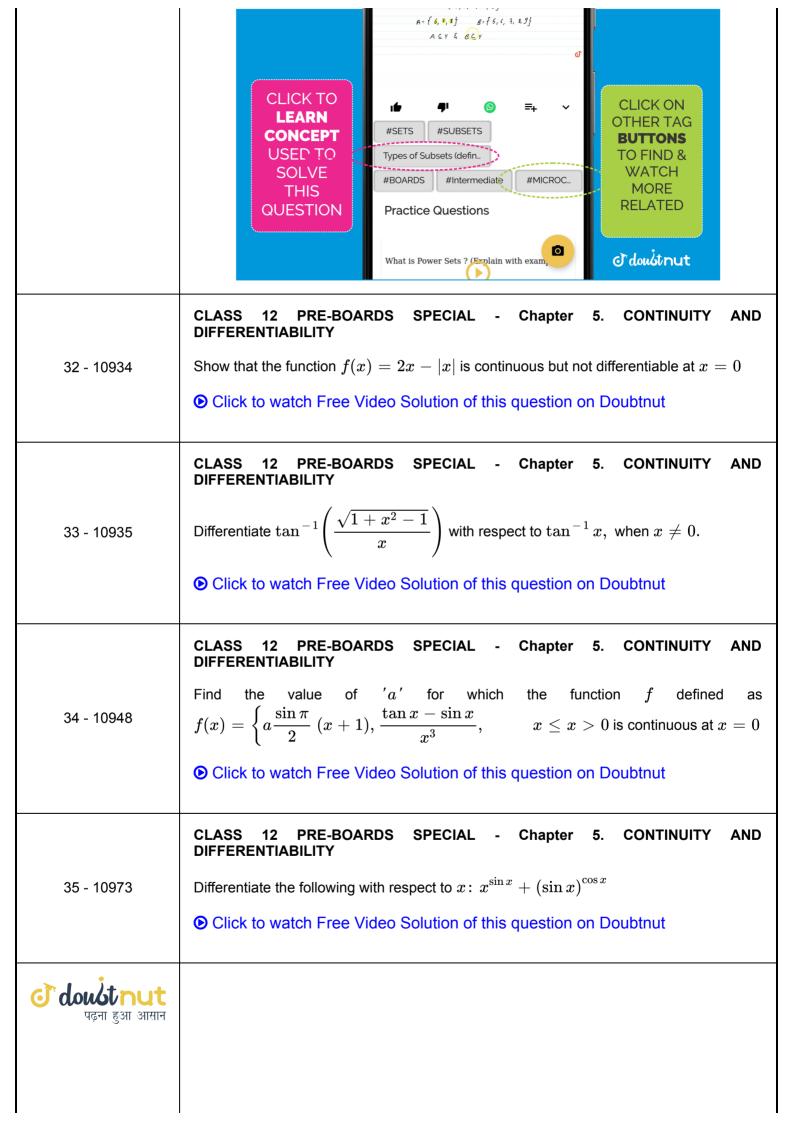
AND

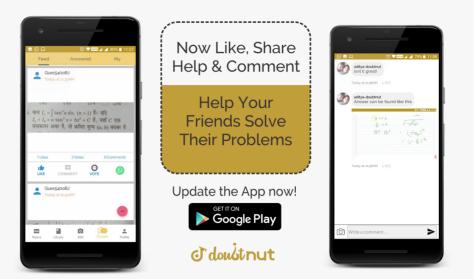
Download Doubtnut Today

Ques No.	Question
1 - 10413	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY
2 - 10416	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY Find the derivative of $\cos(2x+1)$ w.r.t. x from first principle. $lue{f C}$ Click to watch Free Video Solution of this question on Doubtnut
3 - 10418	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY Find the value of k for which the function $f(x)=\{kx+5, \ \text{if} \ x\leq 2x-1, \ \text{if} \ x>2\}$ is continuous at $x=2$ Click to watch Free Video Solution of this question on Doubtnut

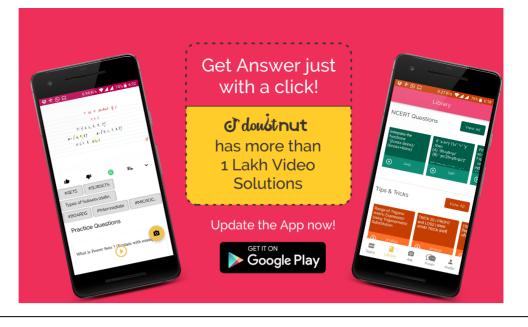
4 - 10487 CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY


	Differentiate $\sqrt{\tan x}$ wrt. x from first principle. Click to watch Free Video Solution of this question on Doubtnut
5 - 10488	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY $ \text{Evaluate: } (\lim)_{x \overrightarrow{\infty}} \sqrt{x^2 + x + 1} - x $ © Click to watch Free Video Solution of this question on Doubtnut
6 - 10504	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY Differentiate with (x^2+1) respect to x from first principle. © Click to watch Free Video Solution of this question on Doubtnut
7 - 10509	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY
ो doustnut पढ़ना हुआ आसान	Click Picture of QUESTION Get an Answer INSTANTLY C'doubtnut Condition to the control of the
8 - 10533	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY Verify Lagranges mean value theorem for the following function: $f(x) = x^2 + 2x + 3$, $for[4, 6]$. © Click to watch Free Video Solution of this question on Doubtnut
9 - 10534	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY


	Discuss the continuity of the following function at x = 0 : $f(\mathbf{x}) = \left\{\frac{\mathbf{x}^4 + 2x^3 + x^2}{\tan^{-1}x}, x \neq 0 \text{ and } 0, x = 0\right\}$
	© Click to watch Free Video Solution of this question on Doubtnut
10 - 10569	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY
	Differentiate the following with respect of $x: \tan^{-1}\left(\frac{\sqrt{1+x} - \sqrt{1-x}}{\sqrt{1+x} + \sqrt{1-x}}\right)$
	▶ Click to watch Free Video Solution of this question on Doubtnut
	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY
11 - 10570	For what value of k is the following function continuous at $x=2$? $f(x)=\{2x+1; x<2k; x=23x-1; x>2\}$
	▶ Click to watch Free Video Solution of this question on Doubtnut
े doust nut पढ़ना हुआ आसान	Click Here to TYPE & ASK Click Here to TYPE & ASK
12 - 10631	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY $ \text{Show that the function } f(x) = x-3 , \ x \in \ \ R, \ \text{is continuous but not differentiable at } x=3. $
	▶ Click to watch Free Video Solution of this question on Doubtnut
13 - 10638	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY


14 - 10689	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY
	Differentiate the following function w.r.t. $x \colon x^{\sin x} + \left(\sin x\right)^{\cos x}$
	▶ Click to watch Free Video Solution of this question on Doubtnut
	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY
15 - 10699	If $\sin y = \sin(a+y), \;\;$ prove that $\dfrac{dy}{dx} = \dfrac{\sin^2{(a+y)}}{\sin{a}}$
	▶ Click to watch Free Video Solution of this question on Doubtnut
a doustnut पढ़ना हुआ आसान	Select CHAPTER Select CHAPTER
16 - 10700	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY $ f(\cos x) ^y = (\sin y)^x, \text{ find } \frac{dy}{dx} $ © Click to watch Free Video Solution of this question on Doubtnut
17 - 10724	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY Find the relationship between a and b so that the function f defined by: $f(x) = \{ax + 1bx + 3 \text{if } x \leq 3 \text{if } x > 3$
18 - 10805	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY
	Differentiate the following with respect to $x \colon \sin^{-1}\!\left(\frac{2^{x+1}\!\cdot 3^x}{1+(36)^x}\right)$

	▶ Click to watch Free Video Solution of this question on Doubtnut
19 - 10806	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY
ो doustnut पढ़ना हुआ आसान	FREE VIDEOS OF PREVIOUS YEAR EXAM PAPERS JEE ADVANCED JEE MAINS 12 BOARD 10 BOARDS Made by Codowstnut Rth आपके लिए
20 - 10833	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY $ \text{Find } \frac{dy}{dx} \text{ if } \left(x^2+y^2\right)^2 = xy $
21 - 10835	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY $ \text{If } x^m y^n = (x+y)^{m+n}, \text{ prove that } \frac{dy}{dx} = \frac{y}{x} \ . $ $ \odot $ Click to watch Free Video Solution of this question on Doubtnut
22 - 10848	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY
23 - 10849	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY


	Show that the function f defined as follows, is continuous at $x=2$, but not differentiable: $f(x)=\left\{3x-22x^25x\ \text{`02\'}\right\}$ Click to watch Free Video Solution of this question on Doubtnut
Toustnut पढ़ना हुआ आसान	मुफ्त में सीएवं सारे टॉफिक Learn All Topics For FREE
24 - 10883	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY
25 - 10893	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY $ fy = \frac{s \in ^{-1} x}{\sqrt{1-x^2}} \text{, show that } \left(1-x^2\right) \frac{d^2y}{dx^2} - 3x \frac{dy}{dx} - y = 0 $ © Click to watch Free Video Solution of this question on Doubtnut
26 - 10905	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY $ fy = \cos^{-1}\left(\frac{3x+4\sqrt{1-x^2}}{5}\right), \ fin \ d\frac{dy}{dx} $ © Click to watch Free Video Solution of this question on Doubtnut
27 - 10907	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY $ y = e^a \sin^{(-1_x)} , -1 \le x \le 1, \qquad \text{then} \qquad \text{show} \qquad \text{that} \\ \left(1-x^2\right) \frac{d^2 y}{dx^2} - x \frac{dy}{dx} - a^2 y = 0 $

36 - 11006	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY Find the value of k so that the function f defined by $f(x) = \left\{ \frac{k\cos x}{\pi - 2x}, 3 \right.$, if $x \neq \frac{\pi}{2}$ if $x = \frac{\pi}{2}$ is continuous at $x = \frac{\pi}{2}$ Click to watch Free Video Solution of this question on Doubtnut
37 - 11020	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY Differentiate the following function with respect to $x \colon (\log \setminus \mathbf{x})^x + x^{\log x}$ Click to watch Free Video Solution of this question on Doubtnut
38 - 11021	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY $ fy = \log \left[x + \sqrt{x^2 + a^2} \right] , \text{ show that } (\left(x^2 + a^2 \right) \frac{d^2y}{dx^2} + x \frac{dy}{dx} = 0 $ © Click to watch Free Video Solution of this question on Doubtnut
39 - 11031	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY $ \text{If } x=a^s\in {}^{(-1)}\ t,\ y=a^{\cos\ }\ ((-1))t,\ \text{show that } \frac{dy}{dx}=-\frac{y}{x} $ © Click to watch Free Video Solution of this question on Doubtnut
doustnut पढ़ना हुआ आसान	

	CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY
40 - 11045	If $x=a(\cos t+t\ s\in\ t)$ and $y=a\ (\sin t-t\cos t),\ \ $ then find $\dfrac{d^2\ y}{dx^2}$.
	▶ Click to watch Free Video Solution of this question on Doubtnut

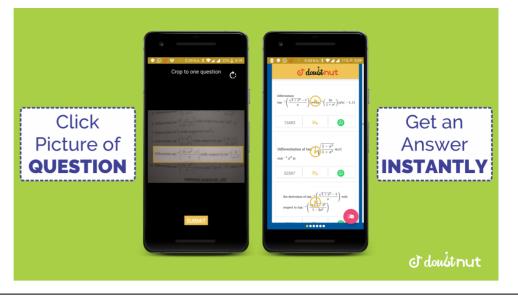
If $\log\left(x^2+y^2\right)=tan^{-1}\left(\frac{y}{x}\right)$, then show that $\frac{dy}{dx}=\frac{x+y}{x-y}$

OClick to watch Free Video Solution of this question on Doubtnut

If $x = a\cos^3\theta$ and $y = a\sin^3\theta$, then find the value of $\frac{d^2y}{dx^2}$ at $\theta = \frac{\pi}{6}$.

Oclick to watch Free Video Solution of this question on Doubtnut

CLASS 12 PRE-BOARDS SPECIAL - Chapter CONTINUITY **DIFFERENTIABILITY**


If
$$y=\sin(\log x), ext{ then prove that } rac{x^2d^2y}{dx^2}+xrac{dy}{dx}+y=0$$

Oclick to watch Free Video Solution of this question on Doubtnut

43 - 11064

42 - 11063

CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY

44 - 11065

Find the value of k, for which $f(x)=\left\{ \begin{cases} \frac{\sqrt{1+kx}-\sqrt{1-kx}}{x^{\frac{2x+1}{x-1}}} \ , & \text{if, } -1\leq x<0 \text{if } 0\leq x<1 \end{cases} \right.$ is continuous at x=0

Click to watch Free Video Solution of this question on Doubtnut

CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY

45 - 11092

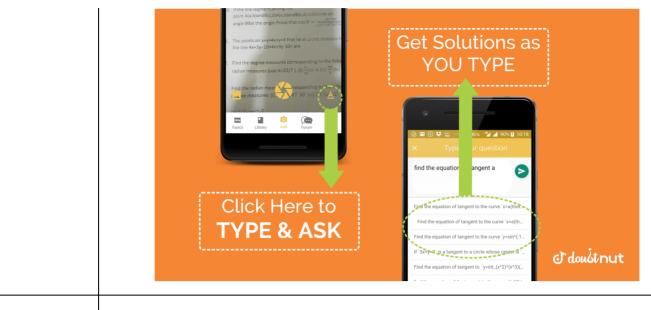
If $(\cos x)^y = (\cos y)^x$, find $\frac{dy}{dx}$

O Click to watch Free Video Solution of this question on Doubtnut

CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY

46 - 11094

Differentiate $an^{-1} \left\lceil rac{\sqrt{1+x^2}-1}{x}
ight
ceil$ with respect to x


Click to watch Free Video Solution of this question on Doubtnut

CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY

If $y= an^{-1}\Bigl(rac{a}{x}\Bigr)+\log\sqrt{rac{x-a}{x+a}}$, Prove that $rac{dy}{dx}=rac{2a^3}{x^4-a^4}$

▶ Click to watch Free Video Solution of this question on Doubtnut

CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY

48 - 13244

Find the value of the constant k so that the function f , defined below, is continuous at x=0 , where $f(x)=\left\{\left(\frac{1-\cos 4x}{8x^2}\right)k\mathrm{if}x\neq\mathrm{if}x=0\right.$

Olick to watch Free Video Solution of this guestion on Doubtnut

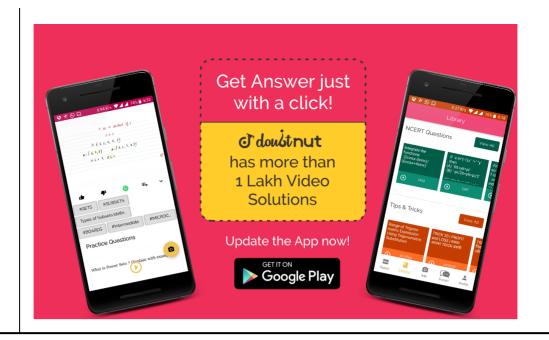
CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY

49 - 13249

Differentiate $\tan^{-1}\left(\frac{\sqrt{1-x^2}}{x}\right)$ with respect to $\cos^{-1}\left(2x\sqrt{1-x^2}\right)$, when $x\neq 0$.

▶ Click to watch Free Video Solution of this question on Doubtnut

CLASS 12 PRE-BOARDS SPECIAL - Chapter 5. CONTINUITY AND DIFFERENTIABILITY


50 - 13284

Write the derivative of $\sin x$ w.r.t. $\cos x$

Olick to watch Free Video Solution of this guestion on Doubtnut

doustnut

- Download Doubtnut to Ask Any Math Question By just a click
- ✓ Get A Video Solution For Free in Seconds
- ◆ Doubtnut Has More Than 1 Lakh Video Solutions
- ✓ Free Video Solutions of NCERT, RD Sharma, RS Aggarwal, Cengage (G.Tewani), Resonance DPP, Allen, Bansal, FIITJEE, Akash, Narayana, VidyaMandir
- Download Doubtnut Today

