NEET REVISION SERIES

STATES OF MATTER

Revise Most Important Questions to Crack NEET 2020

Q-1 - 12225731

14.9atm. The pressure gauge of cyclinder indicates 12atm at 27C.

Due to sudden fire in building the temperature starts rising. The

temperature at which the cyclinder will explode is

(A) $42.5^{\,\circ}C$

(B) $67.8^{\circ}C$

(C) $99.5^{\,\circ}C$

(D) $25.7^\circ C$

CORRECT ANSWER: C

SOLUTION:

$$rac{P_1}{T_1} = rac{P_2}{T_2} \ rac{12}{12} = rac{14.9}{T_2} \ rac{300}{T_2} = 372.5K = 99.5C$$

Watch Video Solution On Doubtnut App

Q-2 - 12225451

If P, V, and T represent pressure, volume and temperature of the

gas, the correct representation of Boyle's law is

(A)
$$V \propto rac{1}{T}$$
 (at constant P)
(B) $PV = RT$

(C) $V \propto 1/P$ (at constant T)

(D) PV = nRT

CORRECT ANSWER: C

SOLUTION:

Boyle's law is
$$V \propto \frac{1}{P}$$
 at constant T

Watch Video Solution On Doubtnut App

Q-3 - 15880177

If V_0 is the volume of a given mass of gas at 273K at constant

pressure, then accoding to Charle's law, the volume at 10C will be:

(A)
$$10V_0$$

(B) $\frac{2}{273}(V_0 + 10)$
(C) $V_0 + \frac{10}{273}$

(D) - 273-*v*₀

CORRECT ANSWER: D

If value of azimuthal quantum number l is 2, then total possible values of magnetic quantum number will be.

(A) 7

(B) 5

(C) 3

(D) 2

CORRECT ANSWER: B

SOLUTION:

(b) If value of 1 is 2 then

including zero.

(5 values of magnetic quantum number).

Watch Video Solution On Doubtnut App 📀

Q-5 - 11034751

According to Charles's law

(A)
$$(dV/dT)_P = K$$

(B) $(dV/dT)_P = -K$
(C) $(dV/dT)_P = -K/T$
(D) $V \propto T$

SOLUTION:

Charles's law,

= K

 $V \propto T \therefore \left(\frac{\partial V}{\partial T}\right)_P$

I,II,III are three isotherms respectively at T_1 , T_2 and T_3 for a fixed

mass of gas, as shown in graph. Temperature will be in order :

(A) $T_1 = T_2 = T_3$

(B) $T_1 < T_2 < T_3$

(C) $T_1 > T_2 > T_3$

(D) $T_1 > T_2 = T_3$

CORRECT ANSWER: C

Q-7 - 12225461

A certain sample of gas has a volume of 0.2 litre measured at 1atm pressure and 0*C*. At the same pressure but at 273C, its volume will be

(A) 0.4 litres

(B) 0.8*litres*

(C) $27.8^{\circ}C$,

(D) 55.6 litres

CORRECT ANSWER: A

SOLUTION:

Q-8 - 12225462

An open vessel containing air is heated form 300K to 400K. The fraction of air originally present which goes out of it is at 400K

(A) 3/4

(B) 1/3

(C) 2/3

(D) 1/8

CORRECT ANSWER: B

SOLUTION:

Let the volume escaped be V and the initial volume be

$$V_1$$
 Then form $rac{V_1}{V_2} = rac{T_1}{T_2}$
 $rac{V_1}{V_1 + V} = rac{300}{400}$
 $\Rightarrow V = rac{1}{3}V_1$

Watch Video Solution On Doubtnut App

Q-9 - 12225464

 $400cm^3$ of oxygen at 27*C* were cooled to -3C without change in pressure. The contraction in volume will be as per Boyle's law?

(A) $40 cm^3$

(B) $30cm^3$

(C) $44.4cm^3$

(D) $360 cm^3$

CORRECT ANSWER: A

SOLUTION:

$$egin{aligned} V_2 &= rac{T_2}{T_1} \Rightarrow V_2 \ &= rac{270K}{300K}.\ 400cm^3 \ &= 360cm^3 \end{aligned}$$

Contraction

$$V_1 - V_2 = 400 - 360$$

 $= 40cm^3$
Watch Video Solution On Doubtnut App

Q-10 - 52403623

If $20cm^3$ gas at 1 atm is expanded to $50cm^3$ at constant T, then

what is the final pressure

(C)
$$1 \times \frac{1}{20} \times 50$$

(D) None of these

CORRECT ANSWER: A

SOLUTION:

At constant
$$T, P_1V_1 = P_2V_2$$

 $1 imes 20 = P_2 imes 50, P_2$
 $= rac{20}{50} imes 1$

Watch Text Solution On Doubtnut App

Q-11 - 52403816

300 ml of a gas at 27C is cooled to -3C at constant pressure, the

final volume is

(A) 540 ml

(B) 135 ml

(C) 270 ml

(D) 350 ml

CORRECT ANSWER: C

SOLUTION:

$$egin{aligned} V_2 &= rac{T_2}{T_2}. \, V_1 = rac{270 K}{300 K} \ imes \ 300 ml = 270 ml \end{aligned}$$

Watch Text Solution On Doubtnut App

Q-12 - 52403826

Volume of the air that will be expelled from a vessel of $300 \ cm^3$

when it is heated from 27C to 37C at the same pressure will be

(A) $310 cm^3$

(B) $290cm^3$

(C) $10cm^3$

(D) $37 cm^3$

CORRECT ANSWER: C

SOLUTION:

$$egin{aligned} &rac{V_2}{V_1} = rac{T_2}{T_1} \ &rac{T_2}{V_1} = rac{T_2}{T_1} V_1 \ &= rac{310K}{300K} imes 300 cm^3 \ &= 310 cm^3 \end{aligned}$$

Watch Text Solution On Doubtnut App

Q-13 - 12225480

At definite temperature the volume of a definite mass of gas is 10L

at 5*atm* pressure, at the same temperature if the pressure of the gas

is decreased to 1atm, the volume of same gas becomes

(A) 50L

(B) 2*L*

(C) 5L

(D) 0.5L

CORRECT ANSWER: A

SOLUTION:

- $p_1 = 5atm$
- $v_1 = 10L$
- $p_2 = 1 atm \quad V_2 = ?$ $P_1 V_1 = p_2 V_2$
- or $rac{P_1}{P_2} = rac{V_1}{V_2}$ $rac{5}{1} = rac{V_2}{10}$

 $V_2 = 50L$

Q-14 - 52403810

Pressure of a mixture of 4 g of O_2 and 2g of H_2 confind in a bulb of

1 litre at 0C is

(A) 25.215 atm

(B) 31.205 atm

(C) 45.215 atm

(D) 15.210 atm

CORRECT ANSWER: A

SOLUTION:

No. of moles of
$$O_2=rac{4}{32}=0.125$$

No. of moles of $H_2=rac{2}{2}=1$

Total no. of moles = 1 + 0.125 = 1.125

Densities of two gases are in the ratio 1:2 and their temperatures are in the ratio 2:1, then the ratio of their respective pressure is

(A) 1:1

(B) 1:2

(C) 2:1

CORRECT ANSWER: A

SOLUTION:

$$egin{array}{lll} rac{d_1}{d_2} &= rac{1}{2}, rac{T_1}{T_2} &= rac{2}{1}\ rac{1}{Q_2} &= rac{P_1}{2}\ dots &= rac{V_2}{V_1} imes rac{T_1}{T_2}\ &= rac{T_1 d_1}{T_2.\ d_2} \end{array}$$

$$\frac{P_1}{P_2} = \frac{2}{1} \cdot \frac{1}{2} = \frac{1}{1}$$

Watch Video Solution On Doubtnut App

Q-16 - 12225488

Which of the following is/are incorrect regarding the universal gas constant (R)?

(A) R is independent of pressure

(B) R is independent of temperature

(C) R is independent of volume of gas

(D) R is dependent on nature of gas

SOLUTION:

R is dependent only on units of measurement of

pressure and volume

Watch Video Solution On Doubtnut App

Q-17 - 52403615

Two separate bulbs contain ideal gases A and B . The density of gas

A is twice that of gas B. The molecular mass of A is half that of gas

B. The two gases are at the same temperature. The ratio of the

pressure of A to that of gas B is

(B) 1/2

(C) 4

(D) 1/4

CORRECT ANSWER: C

SOLUTION:

$$egin{aligned} &d_a = 2d_b, 2M_a = M_b\ &PV = nRT\ &= rac{m}{M}RT, P = rac{m}{V}\ &rac{RT}{M} = rac{dRT}{M} \end{aligned}$$

$$egin{aligned} rac{P_a}{P_b} &= rac{d_a}{d_b} rac{M_b}{M_a} &= rac{2d_b}{d_b} \ & imes rac{2M_a}{M_a} &= 4 \end{aligned}$$

Watch Text Solution On Doubtnut App

Q-18 - 14624160

The volume of a gas increases by a factor of 2 while the pressure

decrease by a factor of 3 Given that the number of moles is

unaffected, the factor by which the temperature changes is :

$$\begin{array}{l} \text{(A)} \ \displaystyle\frac{3}{2} \\ \text{(B)} \ \displaystyle\frac{3}{2} \times 2 \\ \text{(C)} \ \displaystyle\frac{2}{3} \\ \text{(D)} \ \displaystyle\frac{1}{2} \times 3 \end{array}$$

CORRECT ANSWER: 3

SOLUTION:

$$PV = nRT$$

 $rac{P}{3} imes 2V = nRT$
 $T' = rac{2}{3}T$

Q-19 - 11034740

If 10g of a gas at atmospheric pressue is cooled from 273C to 0C,

keeping the volume constant, its pressure would become

(A) 1/273atm

(B) 2*atm*

(C) $\frac{1}{2}atm$

(D) $5.05 imes10^4Nm^{-2}$

SOLUTION:

Hint: Given,

 $T_1=273C~{
m or}~546.15K$

 $P_1 = 1atm$

$T_2 = 0C ext{ or } 273.15K$

 $P_2 = ?$ $\therefore \frac{P_1}{T_1} = \frac{P_2}{T_2}$

 $\therefore P_2 = \frac{P_1 \times T_2}{T_1}$ 1 imes 273.15546.15

 $=rac{1}{273.1} atm$ or $5.05 imes 10^4 Nm^{-2}$

Watch Video Solution On Doubtnut App

Q-20 - 12225497

What is the molecular weight of a gas whose density

40C and 785mm of Hg pressure is $1.3gL^{-1}$?

(A) 32

(B) 40

(C) 15

(D) 98

CORRECT ANSWER: A

SOLUTION:

We know that PV = nRT $PV = \frac{\omega}{M} RT$ or P $=rac{\omega}{V} imesrac{1}{M}RT$ $\operatorname{Or} P = \frac{d}{M} RT$ Now, $rac{785}{760} = rac{1.3}{M} imes 0.0821$ \times 313

or M = 32.4 or 32

Watch Video Solution On Doubtnut App

120g of an ideal gas of molecular weight 40 is confirmed to a

volume of 20 litreat 400 K, then the pressure of is:

(A) 490atm

(B) 4.92*atm*

(C) 2236*atm*

(D) 22.4*atm*

CORRECT ANSWER: B

SOLUTION:

$$P = rac{3 imes 0.082 imes 400}{20}
onumber \ \Rightarrow P = 4.92 atm$$

Watch Video Solution On Doubtnut App

Q-22 - 12225502

A cylinder contains accetylene gas at 27C and 4.05Mpa. The

pressure in the cylinder after half the mass of gas is used up and

temperature has fallen to 12C will be:

(A) 4.05MPa

- (B) 2.025*MPa*
- (C) 3.84MPa

(D) 1.92MPa

CORRECT ANSWER: D

SOLUTION:

$$PV = \frac{w}{M_w} RT \quad \frac{P}{WT}$$

= constant

$$rac{P_1}{w_1 T_1} = rac{P_2}{w_2 T_2} \ 4.05$$

$P_2 = 1.92MPa$

Q-23 - 12225503

For a definite amount of gas, pressure and volume are increased to

triple of the initial amount, Therefore

(A) Temperature increased to nine times of its initial value

(B) Temperature increased to thrice of its initial value

(C) Temperature remains unaltered

(D) Temperature reduced to thrice of its initial value

CORRECT ANSWER: A

SOLUTION:

 $\frac{PV}{T} = \text{constant}$ $\Rightarrow \frac{PV}{T_1} = \frac{3P3V}{T_2}$

 $T_2=9T_1$

Temperature increased to nine times of its initial value.

Watch Video Solution On Doubtnut App

Q-24 - 12225504

3.2g of S is heated to occupy a volume of 780ml at 450C and

723mm pressure. Formula of sulphure is

(A) S_2

(C) S_4

(D) S_8

CORRECT ANSWER: D

SOLUTION:

$$PV = rac{w}{M}RT \ rac{723}{760} imes rac{780}{1000} = rac{3.2}{M} \ imes 0.0821 imes 683$$

M = 256

$$\therefore$$
 Atomicity $=rac{256}{32}=8$

Watch Video Solution On Doubtnut App

Q-25 - 12225505

The pressure and temperature of $4dm^3$ of carbon dioxide gas are

doubled. Then the volume of carbon dioxide gas would be

(C) $4dm^3$

(D) $8dm^3$

CORRECT ANSWER: C

SOLUTION:

P_1V_1 _	P_2V_2
T_1	$\overline{T_2}$ '
$P_1 imes 4$	$_~2P_1 imes V_2$
$\overline{T_1}$	$\overline{}2T_1$

$$8=2 imes V_2$$
 so $V_2=4dm^2$

Watch Video Solution On Doubtnut App

Q-26 - 12225507

The volume of 10 moles of an ideal gas at 10atm and 500K is

(A) 82L

(B) 41L

(C) 20.5L

(D)
$$\frac{82}{3}L$$

CORRECT ANSWER: B

SOLUTION:

- n = 10 mole
- P = 10atm
- T = 500K
- $egin{array}{ll} R=0.0821L\ -atmK^{-1}mol^{-1} \end{array}$

PV = nRT

V = 41L

Watch Video Solution On Doubtnut App

Q-27 - 12225508

The molecules of a gas A travel four times faster than the molecules of gas B at same temperature. The ratio of molecular weights (M_A/M_B) is

(A) 1/16

(B) 4

(C) 1/4

(D) 16

CORRECT ANSWER: A

SOLUTION:

Watch Video Solution On Doubtnut App

Q-28 - 11034916

Equal weights of methane and hydrogen are mixed in an empty container at 25C. The fraction of the total pressure exerted by hydrogen is

(A)
$$\frac{1}{2}$$

(B) $\frac{8}{9}$
(C) $\frac{1}{9}$
(D) $\frac{16}{10}$

(17)

SOLUTION:

Let 16g of both be mixed. Mole of $H_2=rac{16}{2}=8$

Mole of $CH_4 = rac{16}{16} = 1$ Mole fraction of $H_2 = rac{8}{1+8} = rac{8}{9}$

Which is also the fraction of total pressure executed by

 H_2 .

XmL of H_2 gas effuses through a hole in a container in 5s. The

time taken for the effusion of the same volume of the gas specified

below, under identical conditions, is

(A) 10*s*, *He*

(C) 25*s*, *CO*

(D) 55s, CO_2

SOLUTION:

For the same volume diffused,

 $t \propto M$ (Graham's law)

$$\frac{t_1}{t_2} = \sqrt{\frac{M_1}{M_2}}$$
(a) $\frac{5}{10} \neq \sqrt{\frac{2}{4}}$
(b) $\frac{5}{20} = \sqrt{\frac{2}{32}}$
(c) $\frac{5}{25} \neq \sqrt{\frac{2}{32}}$
(d) $\frac{5}{55} \neq \sqrt{\frac{2}{28}}$

Watch Video Solution On Doubtnut App

The rate of effusion of two gases 'a' and 'b' under identical

conditions of temperature and pressure are in the ratio of 2:1 What

is the ratio of rms velocity of their molecules if T_a and T_b are in the

ratio of **2**:1?

(A) 2:1

(B) $\sqrt{2}:1$

(C) $2\sqrt{2}:1$

(D) $1:\sqrt{2}$

CORRECT ANSWER: C

SOLUTION:

$$egin{aligned} rac{r_a}{r_b} &= rac{2}{1} = \sqrt{rac{M_b}{M_a}} \ V_{rms} \propto \sqrt{rac{T}{M}} iggl(AsV_{rms}) \end{aligned}$$

 N_2 is found in a litre flask under 100kPa pressure and O_2 is found in another 3litre flask under 20KPa pressure. If the two flask are connected, the resultant pressure is

(A) 310kPa

(B) 210kPa

(C) 420kPa
CORRECT ANSWER: D

SOLUTION:

Total volume of two flasks = 1 + 3 = 4

If P_1 the pressure of gas N_2 in the mixture of N_2 and

 O_2 , then $P = 100kPa, P_1 = ?,$ V = 1litre, $V_1 = 4$ litre

Applying Boyle's law $PV = P_1V_1$ $100 \times 1 = P_1 \times 4, P_1$ = 25

If P_2 is the pressure of O_2 gas in the mixture of O_2 and

 N_2

then,

$320 imes 3=P_2 imes 4,P_2$

Hence, total pressure $P = P_1 + P_2 = 25$ $+ 240 = 265kP_a$ Watch Video Solution On Doubtnut App

Q-32 - 12225521

A and *B* are two idential vessels. *A* contains 15g ethane at 1atmand 298K. The vessel *B* contains 75g of a gas X_2 at same temperature and pressure. The vapour density of X_2 is :

(A) 75

(B) 150

(D) 45

CORRECT ANSWER: A

SOLUTION:

$$egin{array}{lll} rac{15}{30} &= rac{75}{M_B} \ M_B &= 150, (VD)_B \ &= rac{150}{2} &= 75 \end{array}$$

Watch Video Solution On Doubtnut App

Q-33 - 15880307

20L of SO_2 diffuse through a porous partition in 60 seconds.

Volume of O_2 diffuse under similar conditions in 30 seconds will

be:

(A) 12,14L

(B) 14.14L

(C) 18.14L

(D) 28.14L

CORRECT ANSWER: B

Watch Video Solution On Doubtnut App

Q-34 - 11034847

A vessel is filled with a mixture of oxygen and nitrogen. At what ratio of partial pressures will the mass of gases be identical?

(A) $P(O_2) = 0.785 P(N_2)$ (B) $P(O_2) = 8.75P(N_2)$ (C) $P(O_2) = 11.4P(N_2)$ (D) $P(O_2) = 0.875 P(N_2)$

SOLUTION:

PV = nRT $PV=rac{w}{m}RT$ $P_{O_2}V=rac{w}{32}RT$.(i)

$$P_{O_2}V = \frac{w}{28}RT.(ii)$$

$$\frac{P_{O_2}}{P_{N_2}} = \frac{28}{32}$$

$$P_{O_2} = 0.875P_{N_2}$$
Watch Video Solution On Doubtnut App

A sample of gas is at 0C. The temperature at which its rms speed of the molecule will be doubled is

(A) $103\,^\circ C$

(B) $273\,^\circ C$

(C) $723^{\,\circ}\,C$

(D) $819^{\,\circ}\,C$

CORRECT ANSWER: D

SOLUTION:

Q-36 - 12225528

A vessel contains 0.1 mole of He, $0.1 mole of O_2$ and 0.3 mole of

 N_2 . The total pressure is 1 atomosphere. The pressure exerted by O_2 is

(A) 380mm of Hg

(B) 456mm of Hg

(C) 304mm of Hg

(D) 152mm of Hg

SOLUTION:

Total moles

 $= 0.1(He) + 0.1(O_2)$ $+ 0.3(N_2) = 0.5$ moles

Pressure exerted by $O_2 =$ mole fraction of

 $O_2 \times \text{total pressure}$ $rac{0.1}{0.5} imes 1 = rac{1}{5} imes 760$ = 152mmHg

Watch Video Solution On Doubtnut App

Q-37 - 15880305

The rates of diffusion of SO_3 , CO_2 , PCl_3 and SO_2 are in the

following order:

(A) $PCl_3 > SO_3 > CO_2$

(B)

$CO_2 > SO_2 > PCl_3 \ > SO_3$

(C) $SO_2 > SO_3 > PCl_3 > CO_2$

(D) $CO_2 > SO_2 > SO_3 > PCl_3$

CORRECT ANSWER: D

Watch Video Solution On Doubtnut App

Q-38 - 12225533

Under identical conditions of temperature, the density of a gas X is

three times that of gas Y while molecular mass of gas Y is twice

that of X. The ratio of pressure of X and Y will be

(A) 6

(B) 1/6

(C) 2/3

(D) 3/2

CORRECT ANSWER: A

SOLUTION:

$$\rho = \frac{PM}{RT} \Rightarrow P$$
$$= \frac{\rho RT}{M}$$

$$egin{aligned} P_x &= rac{
ho imes RT}{M_x} & P_y \ &= rac{
ho_x RT}{3} \ rac{2Mx} \end{aligned}$$

 $6P_y = rac{
ho_x RT}{M_X}$ $\therefore 6P_Y = P_X \quad rac{P_X}{P_Y}$ = 6

Q-39 - 12225534

 NH_3 and SO_2 gases are being prepared at two corners of a laboratory. The gas that will be detected first in the middle of the laboratory is:

(A) NH_3

(B) SO_2

(C) both at the same time

(D) can't determine

CORRECT ANSWER: A

SOLUTION: Rate of diffusion $\propto \frac{1}{\sqrt{\text{molecular mass}}}$

Q-40 - 12225536

1000ml of a gas A at 600torr and 500ml of a gas B at 800torr are

placed in a 2L flask. The final pressure will be

(A) 2000torr

(B) 1000torr

(C) 500torr

(D) 1400torr

CORRECT ANSWER: C

SOLUTION:

From Dalton's partial pressure law

$$egin{aligned} V_1 &= 1500 mL \ P_2 &= ?V_2 = 2L \ &= 2000 mL \end{aligned}$$

From
$$P \propto \frac{1}{V}$$

 $\frac{P_1}{P_2} = \frac{V_2}{V_1} =$

$$\Rightarrow \frac{2000/3}{P} = \frac{2000}{1500}$$

P_2 1500

$\Rightarrow P_2 = rac{1500}{3} = 500 \mathrm{torr}$

Q-41 - 52403662

Equal masses of methane and oxygen are mixed in an empty container at 25C. The fraction of the total pressure exerted by oxygen is

(A)
$$\frac{2}{3}$$

(B) $\frac{1}{3} \times \frac{273}{298}$
(C) $\frac{1}{3}$
(D) $\frac{1}{2}$

CORRECT ANSWER: C

SOLUTION:

Let the mass of methane and oxygen is w

mole fraction of oxygen =

$$\frac{\frac{w}{32}}{\frac{w}{32} + \frac{w}{16}}$$

$$=\frac{\frac{1}{32}}{\frac{1}{32}+\frac{1}{16}}=\frac{\frac{1}{32}}{\frac{3}{32}}\\=\frac{1}{3}$$

Let the toal pressure be P

The pressure exerted by oxygen (partial pressure)

$$egin{aligned} &= X_{O_2} imes P_{ ext{total}} \Rightarrow P \ & imes rac{1}{3} \end{aligned}$$

, Hence, (c) is correct.

Q-42 - 11034926

The rate of diffusion of methane at a given temperature is twice that

of a gas X. The molecular weight of X is

(A) 64.0

(B) 32.0

(C) 4.0

(D) 8.0

SOLUTION:

 $rac{r_{ ext{methane}}}{r_{gas}} = \sqrt{rac{M_{gas}}{M_{ ext{methane}}}}$ (Graham's law) or $2 = \sqrt{rac{M_{gas}}{16}}$ or $M_{gas} = 64$

Watch Video Solution On Doubtnut App

Q-43 - 12225546

The r. m. s. velocity of hydrogen at

$$27C, R = 8.314 Jmol^{-1}K^{-1}$$
 is:

(A) 1.934m/s

- (B) 19.34m/s
- (C) 193.4m/s
- (D) 1934m/s

CORRECT ANSWER: D

SOLUTION:

$$egin{aligned} U_{rms} &= \sqrt{rac{3RT}{M_w}} \ & \Rightarrow \sqrt{rac{3 imes 8.314 imes 300}{2 imes 10^{-3}}} \end{aligned}$$

 $U_{rms} = 1934m / \sec$

Q-44 - 12225551

Temperature at which r. m. s speed of O_2 is equal to that of neon at 300K is:

(A) 280K

(B) 480K

(C) 680K

(D) 180K

CORRECT ANSWER: B

SOLUTION:

$$U_{rms} = \sqrt{\frac{T}{M_w}}T$$

 $\propto M_w$

Q-45 - 11034838

At STP, the order of mean square velocity of molecules of H_2 , N_2 ,

 O_2 , and HBr is

(A) $H_2 > N_2 > O_2$ > HBr(B) $HBr > O_2 > M_2$ $> H_2$ (C) $HBr > H_2 > O_2$ $> N_2$

SOLUTION:

Q-46 - 18255327

The ratio between the root mean square velocity of H_2 at 50 K and

that of O_2 at 800 K, is

(A) 4

(B) 2

(C) 1

SOLUTION:

Watch Text Solution On Doubtnut App

Q-47 - 12225560

The ratio, $\frac{\text{rms velocity of } SO_2}{\text{rms velocity of He}}$, of sulpur dioxide and helium gases

at 30C is equal to:

(A) 4

(B) 0.25

(C) 0.10

(D) 8

CORRECT ANSWER: B

SOLUTION:

$$\sqrt{rac{4}{64}} = rac{1}{4} = 0.25$$

Watch Video Solution On Doubtnut App

The R. M. S. Speed of the molecules of a gas of density kgm^{-3}

and pressure
$$1.2 \times 10^5 Nm^{-2}$$
 is:

(A) $120ms^{-1}$

- (B) $300 m s^{\,-1}$
- (C) $600 m s^{-1}$
- (D) $900 m s^{-1}$

CORRECT ANSWER: B

SOLUTION:

$$U_{rms} = \sqrt{rac{3PV}{M}}
onumber \ = \sqrt{rac{3P}{d}}$$

$$=\sqrt{rac{3 imes1.2 imes10^5}{4}}$$

Watch Video Solution On Doubtnut App

The average speed of an ideal gas molecule at 27C is 0.3m, sec⁻¹.

The average speed at 927C

(A) $0.15m \sec^{-1}$

- (B) $0.6m \sec^{-1}$
- (C) $1.2m \sec^{-1}$

(D) $0.6cm \sec^{-1}$

CORRECT ANSWER: B

SOLUTION:

$\sqrt{8RT}$

$U_{AVg}.~=0.6m/\sec$

Q-50 - 52403771

- The rms speed of N_2 molecules in a gas is u. If the temperature is
- doubled and the nitrogen molecules dissociate into nitrogen atoms,

the rms speed becomes

(A) u/2

(B) 2u

(C) 4u

(D) 14u

CORRECT ANSWER: B

SOLUTION:

$$egin{aligned} & rac{U_1}{U_2} = \sqrt{rac{n_1 T_1}{n_2 T_2}} \ & = \sqrt{rac{n imes T}{2n imes 2T}} = \sqrt{rac{1}{4}} \ & = rac{1}{2} \end{aligned}$$

$$U_1=2U_1=2U$$

Q-51 - 12225583

The KE of N molecule of O_2 is x joules at -123C. Another

sample of O_2 at 27C has a KE of 2x joules. The latter sample

contains

(A) N molecules of O_2

(B) 2N molecules of O_2

(C) N/2 molecules of O_2

(D) N/4 molecules of O_2

CORRECT ANSWER: A

SOLUTION:

$$egin{aligned} & KE = rac{3}{2}RT, T = \ & -123 + 273 = \ & +150K \end{aligned}$$

$$egin{array}{c} rac{3}{2} imes R imes 150 = 3 \ imes 8.314 imes 75 = xJ \end{array}$$

$$=225 imes 8.314=x$$

At

$$27C = 27 + 223$$

= 300K

$K\!E$ for

$$=2xJ=rac{3}{2} imes 8.314$$

 \times 300

N molecules

- $\therefore x \text{Joule} = 3 \times 8.314$
- imes 75

In both the cases xJ corresponds to N molecules.

Watch Video Solution On Doubtnut App

Q-52 - 52403814

What is the relationship between the average velocity (v), root

mean square velocity (u) and most probable velocity (a)

(A)
$$\alpha : v : u : : 1 : 1.128$$

(B)

$\alpha : v : u : : 1.128 : 1$

:1.224

(C)

```
\alpha : v : u : : 1.128 : 1.224
:1
(D)
\alpha: v: u: :1.124:1.228
:1
```

CORRECT ANSWER: A

SOLUTION:

 $V_{av}: V_{rms}: V_{most probable}$ $= V : U : \alpha$

$$\sqrt{\frac{8RT}{\pi M}} : \sqrt{\frac{3R}{M}}$$
$$: \sqrt{\frac{2RT}{M}}$$

 $\alpha\!:\!V\!:\!U=\sqrt{2}\!:\!\sqrt{\frac{\circ}{\pi}}$

$:\sqrt{3} = 1:1.128:1.224$

 NH_3 is liquefied more easily than N_2 . Hence

(A) a and b of
$$NH_3$$
 > that of N_2
(B) $a(NH_3) > a(N_2)$ but $b(NH_3) < b(N_2)$
(C) $a(NH_3) < a(N_2)$ but $b(NH_3) > b(N_2)$
(D) None

CORRECT ANSWER: B

SOLUTION:

More is the value of a mass greater is the liquefaction

and bigger is the size of molecule bigger is the 'b'

value.

Calculate the compressibility factor for CO_2 if one mole of it occupies 0.4 litre at 300K and 40atm. Comment on the result:

(A) $0.40, CO_2$ is more compressible than ideal gas

(B) $0.65, CO_2$ is more compressible than ideal gas

(C) $0.55, CO_2$ is more compressible than ideal gas

(D) $0.62, CO_2$ is more compressible than ideal gas

CORRECT ANSWER: B

SOLUTION:

PV

Z = 0.65

Q-55 - 12225603

Which of the following is the correct set of volume calculated by ideal gas equation and van der Waals equation respectively for 1 mole CO_2 gas at 300K and 10atm pressure.

$$(n) = 0.0821 Latm K^{-1} mol^{-1})$$

(A) 2.463L, 2.56L

(B) 2.463L, 2.38L

(C) 2.463L, 2.463L,

(D) 2.463L, 2.5L

CORRECT ANSWER: B

SOLUTION:

For
$$CO_2$$
, at $10atmZ < 1$
 $\Rightarrow \frac{V_R}{V_I} < 1 \Rightarrow V_R$
 $< V_I$
Watch Video Solution On Doubtnut App

Q-56 - 12225606

Which of the following satisfies the greater compressibility of real

gas?

(A) Z < 1

(B) At the higher pressure

(C) Above the Boyle's temperature

CORRECT ANSWER: A

SOLUTION:

Z < 1 shows that the gas has greater compressibility at intermidiate pressure and all reactive forces are dominant, higher value of 'a' and lower value of 'b' above Boyle's temperature is not possible because Z > 1.

Watch Video Solution On Doubtnut App 📀

Q-57 - 12225607

The correct order of normal boiling of O_2 , N_2 , NH_3 and CH_4 for

whom the values of van der Waals constant 'a' are

1.360, 1.390, 4.170 and $2.253L^2 atmol^{-2}$ respectively, is:

(A)

$O_2 < N_2 < NH_3$ $< CH_4$

(B)

 $O_2 < N_2 < CH_4$ < NH

(C)

 $NH_3 < CH_4 < N_2$ $< O_2$

(D) $NH_3 < CH_4 < O_2$ $< N_2$

CORRECT ANSWER: B

Watch Video Solution On Doubtnut App

Under critical states of a gas for one mole of a gas, compressibility

factor is :

(A) $\frac{3}{8}$ (B) $\frac{8}{3}$ (C) 1 (D) $\frac{1}{4}$

CORRECT ANSWER: A

Watch Video Solution On Doubtnut App

Q-59 - 12225615

For which of the following gas/gases, $\frac{P_C V_C}{RT_C}$ close to 0.22?

(A) Cl_2

(C) $C_2 H_4$

SOLUTION:

Molecule having hydrogen bonding values of $\frac{P_C V_C}{T}$

close to 0.22

Watch Video Solution On Doubtnut App

Q-60 - 11034817

It is eaiser to liquefy oxygen than hydrogen because.

(A) Oxygen has a higher critical temperature and lower inversion temperature than hydrogen.

(B) Oxygen has a lower critical temperature and higher

inversion temperature than hydrogen.

(C) Oxygen has a higher critical temperature and higher

inversion temperature than hydrogen.
(D) The critical temperature and inversion temperature of

oxygen is very low.

SOLUTION:

$$egin{aligned} \mu_{rms}(H_2) &= \sqrt{rac{T}{M}} \ &= \sqrt{rac{50}{2}} = 5 \end{aligned}$$

 μ_{rms} of

$$O_2 \propto \sqrt{rac{T}{M}} = \sqrt{rac{800}{32}} = 5$$

Therefore, the ratio is 1.

Apne doubts kalnstant video solution paayein

Abhi Doubtnut try karein!

Whatsapp your doubts on

8400400400

